
 1

Analysis of Flights of Fantasy

Jed Margolin

{Company’s} Mr. {Person’s} Prior Art References

Flights of Fantasy, Christopher Lampton (The Waite Group 1993). Discusses computer graphics
algorithms for the purpose of generating perspective scenery for flight simulators. Includes
source code examples.

Flights of Fantasy – Programming 3-D Video Games in C++ by Christopher Lampton (ISBN: 1878739182). {Ref.

7a} Mr. {Person’s} characterization of the book does not do the book justice. This is an excellent book that teaches

practical computer graphics including 3D graphics. Only a small part of it is about generating perspective scenery.

Scenery is taught in Chapter 13: Fractal Mountains and Other Types of Scenery (Pages 439 – 455). That’s 17

pages out of a 556 page book. From page 440:

So far, though, we've populated our world with very few objects-a cube here, a pyramid there.
How do we build up something that looks like the scenery in the real world?

Landscaping the Imagination

Building scenery for a flight simulator is a tedious task, but the results can be worthwhile. So far,
we've given you no tools in this book for this task other than ASCII text files that can hold object
descriptions and that can be edited with an ASCII text editor. Ambitious readers, however, may
want to write their own scenery- and object-design utility that uses the mouse, the joystick, or
the keyboard to drag polygons around and to build buildings, mountains, and other pieces of the
landscape. You should be aware, though, that such programs are difficult to write, with much of
the difficulty lying in the user interface itself.

Without such a utility, you have two alternatives for developing scenery for your flight simulators:
edit the ASCII object descriptors by hand or write custom programs for generating specific types
of scenery. In this chapter, we'll give you some tips about both methods.

Lampton then teaches the use of fractals for generating perspective scenery. If {Company} generated fractal terrain

instead of using the DTED the FAA would not have certified it. And the system would also have been useless for

synthetic vision.

The Lampton Flight Simulator is a Simulator. It does not contain the elements needed to fulfill FAA’s definition of

synthetic vision. As previously discussed, according to FAA:

Synthetic vision means a computer-generated image of the external scene topography from the
perspective of the flight deck that is derived from aircraft attitude, high-precision navigation
solution, and database of terrain, obstacles and relevant cultural features.

The Lampton Flight Simulator does not use the DTED and is not used with a real, physical aircraft.

However, there is information relevant to the DTED. In Chapter Eight Polygon-Fill Graphics it teaches the same

method of storing polygons as is explained in my article Polygon Databases - Is a Digital Terrain Elevation

Database (DTED) really a Polygon Database? {Ref. 7b}

 2

Lampton teaches the use of a Point List (vertex type *vertex; // Array of vertices in object) and a Face List

(polygon_type *polygon; // List of polygons in object) because (page 269):

It would be wasteful to store two separate lists of vertices, so we've defined one of these lists (the
one in the polygon structure) as a list of pointers that point at the vertex descriptors in the list
maintained by the object structure. This concept is illustrated in Figure 8-4.

Figure 8-4 makes it clearer than the program snippet. The following is from Lampton CHAPTER EIGHT

POLYGON-FILL GRAPHICS (page 269):

The Object-Type Structure

Now we need a structure that will describe an object made up of polygons, similar to the shape_type

structure that we used in Chapter 7 for storing wireframe shapes. Here's the structure definition:

struct object_type {

int number_of_vertices; // Number of vertices in object

int number_of_polygons; // Number of polygons in object

int x,y,z; // World coordinates of

 // object's Local origin

polygon_type *polygon; // List of polygons in object

vertex type *vertex; // Array of vertices in object

int backface_removal; // Do we want backface removal?

};

You'll notice that much of this structure is redundant. We've seen some of these same fields in the
polygon_type structure. Why do we need a list of vertices in both the polygon structure and the object
structure? The reason is that sometimes we'll want to treat a polygon as a list of vertices; at other times
we'll want to treat an object as a list of vertices. It would be wasteful to store two separate lists of
vertices, so we've defined one of these lists (the one in the polygon structure) as a list of pointers that
point at the vertex descriptors in the list maintained by the object structure. This concept is illustrated in
Figure 8-4.

The backface_removal field might look mysterious to you. We'll discuss this field momentarily.

 3

Lampton also discusses the basics of Polygon Smoothing (page 535):

CHAPTER SIXTEEN THREE-DIMENSIONAL FUTURE

Polygon Smoothing

No amount of light sourcing can turn a polygon-fill object into a completely realistic representation of an
actual object. The problem is that real objects, unlike polygon-fill objects, have curves. With some
exceptions (such as crystalline structures), nature isn't made of polygons. There are techniques, however,
that can turn a surface made out of polygons into a smoothly curved surface, at least on the computer
screen. The most popular of these techniques are Gouraud and Phong shading.

Gouraud shading is the simpler of the two, though it produces slightly less realistic results than
Phong shading. Instead of filling polygons with a solid color based on the angle of that surface relative to
a light source, Gouraud shading interpolates the color of each pixel on each scan line inside the polygon,
based not only on the light-sourced color of the polygon but on the colors of adjacent polygons as well
and the distance of the pixel from the edges of the polygon. Pixels near the center of the polygon are
given the color that all of the pixels in the polygon would be given using the simple light sourcing
techniques described earlier, but pixels toward the edge of the polygon have colors closer to those of
adjacent polygons. Phong shading uses much the same technique, though the calculations used to
determine the colors of the pixels are a bit more complex.

Compared to ordinary polygon-fill graphics, Gouraud and Phong graphics require a great many
computations and are therefore quite slow. At present, it's not likely that a straightforward implementation
of either technique could be used in a real-time flight simulator. However, at least one popular three-
dimensional game - Links, the golf simulation from Access Software - uses

533

FLIGHTS Of FANTASY

rendering techniques that look suspiciously close to either Phong or Gouraud shading. This is made
possible by the fact that Links is not a real-time simulation. The player watches each scene drawn on the
display over a period of seconds. Such slow rendering would be unacceptable in a flight simulator, where
the out-the-window view is constantly changing and at least a dozen frames a second are required to
make the animation seem smooth. But in Links, the view of the golf course only changes when the ball is
hit and therefore remains static for long periods of time. And the high quality of the graphics is well worth
the amount of time required to produce them.

The results produced by these polygon-smoothing techniques are a dramatic improvement over
the polygon-fill techniques we've used in this book. Will it be possible in the future to use them in a flight
simulator? Almost certainly. In fact, simplified versions of these techniques have already found their way
into several recent flight simulators.

The following is what is in the Lampton book. The first is the Table of Contents. The second is a more detailed list of

the contents.

Flights of Fantasy – Programming 3-D Video Games in C++, Christopher Lampton, The Waite Group,

1993

 4

Table of Contents

Chapter 1: A Graphics Primer 1

Chapter 2: The Mathematics of Animation 25

Chapter 3: Painting in 256 Colors 61

Chapter 4: Making It Move 107

Chapter 5: Talking to the Computer 131

Chapter 6: All Wired Up 173

Chapter 7: From Two Dimensions to Three 225

Chapter 8: Polygon-Fill Graphics 263

Chapter 9: Faster and Faster 305

Chapter 10: Hidden Surface Removal 333

Chapter 11: Polygon Clipping 367

Chapter 12: The View System 403

Chapter 13: Fractal Mountains and Other Types of Scenery 437

Chapter 14: Sound Programming 457

Chapter 15: The Flight Simulator 477

Chapter 16: The Three-Dimensional Future 529

Appendix A : Flying the Flights of Fantasy Flight Simulator 541

Appendix B: Books on Three-Dimensional Animation 547

Index: 549

Contents

Preface viii

Chapter 1: A Graphics Primer 3

The Descendants of Flight Simulator 4

Graphics and Games 5

Text vs. Graphics 6

The Programmer's View 7

Inside the VGA 8

IBM Graphics Improve 9

Video Modes Galore 10

Resolution and Color Depth 10

The Memory Connection 12

Bits, Bytes, and Binary 14

Memory Addresses 15

Pointing at Memory 16

Near and Far 11

How Bitmaps Work 18

A Two-Color Bitmap 19

Mode 13h Memory 20

The Color Palette 20

Programming the VGA 21

Chapter 2: The Mathematics of Animation 27

Cartesian Coordinates 28

The Cartesian Plane 29

Geometry Meets Algebra 31

Coordinates on the Computer 33

From Coordinates to Pixel Offsets 34

Moving the Origin 35

Addressing Multiple Pixels 36

Accessing the Video Bios 72
Restoring the Video Mode 74

More about Bitmaps 75

Finding the Bitmap 76

Drawing Pictures in Memory 77

Clearing the Screen 78

Lots and Lots of Colors 80

Setting the Palette 81

The Default Palette 83

Storing Bitmaps 85

Compressing Bitmaps 86

Graphics File Formats 88

OOP PCX File Loader 88

Inside a PCX File 89

The PCX structure 90

PCX Limitations 91

The PCX Loader 92

Reading the Bitmap and Palette 93

A PCX Viewer 96

Compiling and Running the Program 97

Making It Small Again 98

The Compression Function 99

Decompressing the Data 104

Building the Program 105

Chapter 4: Making It Move l09

Motion Pictures, Computer-Style 110

Bitmaps in Motion 112

A Structure for Sprites 113

Building a Sprite Class 114

 5

Into the Third Dimension 37

Shapes, Solids, and Coordinates 40

Three-Dimensional Vertices 42

Graphing Equations 43

Solving the Equation 44

Fractals 46

Transformations 46

Translating and Scaling 47

Rotating on X, Y, and Z 49

Doing What Comes Virtually 49

Degrees vs. Radians 51

Rotation Formulas 52

Matrix Algebra 54

Building Matrices 54

Multiplying Matrices 55

Three Kinds of Rotation Matrices 57

Floating-Point Math 58

Chapter 3: Painting in 256 Colors 63

Color Depth vs. Resolution 64

Getting in the Mode 64

Doing It in Assembly Language 65

Assembly Language Pointers 67

Getting It into a Register 67

Assembly Language Odds and Ends 69

Passing Parameters to Assembly Language Procedures 70

A Simple Sprite Drawing Routine 116

Transparent Pixels 117

Speeding Things Up 118

Putting Sprites 118

Erasing Sprites 119

Grabbing Sprites 120

The Walkman Cometh 122

Buffering the Screen 122

Constructing a Sprite 124

Setting Up the Walking Sequence 124

Looping Through the Sequence 125

Walkman Struts His Stuff 126

Building The Program 129

Chapter 5: Talking to the Computer 133

Programming The joystick 134

Analog vs. Digital 135

Any Old Port 137

The Mathematics of Truth 138

Masking Binary Digits 140

Other Bitwise Operations 141

Decoding the Gameport Byte 141

The Button-Reading Procedure 143

A Bit of Information 144

Timing the Status Bit 144

Counting Down 145

The Joystick-Reading Procedure 145

Calibrating the Joystick 147

Not an Input Device Was Stirring...Except for the Mouse 147

Listening to the Mouse's Squeak 148

Button-Down Mice 150

Mickeying with the Mouse 151

The Mouse Position Function 152

All Keyed Up 153

The BIOS Keyboard Routines 153

Managing Events 156

The Event Manager Functions 158

The Master of Events 159

Inside the Event Manager 160

Walkman Returns 164

Entering a New Dimension 172

Building the Program 172

Chapter 6: All Wired Up 175

Snapshots of the Universe 176

Bitmap Scaling 176

Rendering Techniques 177

Wireframe and Polygon-Fill 178

Vertex Descriptors 180

A Two-Dimensional Wireframe Package 182

Bresenham's Algorithm 186

A Line-Drawing Routine In C++ 189

Testing the Line-Drawing Function 191

Drawing Random Lines 192

A Line-Drawing Function in Assembler 194

Drawing Shapes 196

Creating Shape Data 199

A Shape-Drawing Program in C++ 200

Transforming Shapes 203

Chapter 8: Polygon-Fill Graphics 265

The Polygon Descriptor 266

The Vertex Type Structure 267

The Polygon_Type Structure 268

The Object_Type Structure 269

New Structures 270

Polygon Drawing 270

The Polygon-Drawing Algorithm 273

The Polygon-Drawing Function 275

Getting to the Top 276

From Start to Finish 277

Drawing the Polygon 278

Bresenham Does His Thing 279

The Four Subsections 279

Counting Off the Pixels 281

Looping Until Y Increments 281

Drawing the Line 283

Cleaning Up 284

The Complete Function 284

Manipulating Polygons 293

The Transform() Function 293

The Project() Function 294

Backface Removal 295

The Draw_Object() Function 296

Limitations of Backface Removal 297

The Polygon-Fill Display Program 297

ASCII Object Descriptors 297

Reading the Data File 299

The Polygon Demonstration Program 302

Chapter 9: Faster and Faster 307

Knowing Where to Optimize 308

 6

Local Coordinates 203

Translating 205

Scaling 208

Rotating 212

Doing It with Matrices 217

Chapter 7: From Two Dimensions to Three 227

The Z Coordinate 228

Cubic Universes 229

From World Coordinates to Screen Coordinates 231

Storing the Local X, Y, and Z Coordinates 233

Creating a Three-Dimensional Shape 234

Projection and Perspective 236

The Project() Function 239

Transformation in Three Dimensions 241

The Global Transformation Matrix 243

The Scale() Function 246

The Translate() Function 247

The Rotate() Function 248

The Transform() Function 250

The Draw-Shape(Function 251

Drawing a Cube 252

Animating the Cube 254

The Cube-Rotating Program 255

Drawing a Pyramid 257

Drawing a Letter W 258

Nested Loops 308

The Innermost Loop 309

Profiling Your Code 310

Executing Tprof 311

Reducing to Zero 312

Profiling for Real 313

Integer Fixed-Point Arithmetic 314

Working with Fixed-Point Arithmetic 315

Adjusting the Decimal Position 316

Is It Worth It? 318

Using Look-Up Tables to Avoid Calculations 319

Unrolling the Loop 324

The Mechanics of the Loop 325

Putting It All to Work 326

Chapter 10: Hidden Surface Removal 335

The Problem 336

The Painter's Algorithm 337

Getting the Order Right 339

The Five Tests 343

Mutual Overlap 346

Time Considerations 347

The Z-Buffer Algorithm 348

Back to Depth Sorting 350

Drawing the Polygon List 366

Chapter 11: Polygon Clipping 369

The View Volume 370

Clipping Against the View Volume 325

The Sutherland-Hodgman Algorithm 376

Four Types of Edge 371

The Point-Slope Equation 300

The Clipped Polygon Structure 382

The Clipping Function(s) 385

The Front of the View Volume 306

Type One Edge 387

Type Two Edge 387

Type Three Edged 387

Type Four Edge 388

The Z_clip() Function 389

The Rest of the View Volume 390

Finishing the Clipping 392

Chapter 12: The View System 405

Moving Around Inside the Computer 406

The Stationary Viewer vs. the Moving Viewer 406

Making the Viewer an Object in the World 407

Rotating the Viewer 409

Aligning the Universe 410

The Alignview() Function 410

Relative Motion 412

Aligning Rotation 414

The Transform() Function 415

The View Class 417

The Setview() Function 418

The Setworld() Function 419

Fractal Mountain Ranges 448

The Mountain-Drawing Program 449

The Lineseg() Function 451

The Mountain Program 452

 Three-Dimensional Fractals 454

Chapter 14: Sound Programming 459

What Is Sound? 460

The Parts of a Wave 460

Complex Sound Waves 461

Recording Sound 463

Digital Sound 464

The Sound Blaster DAC 466

Digital Sound Effects 467

The FM Synthesizer 468

Inside the FM Chip 469

The Sound Blaster Interface 469

Initializing the FM Chip 469

Setting Up a Sound 470

Setting Up the Envelopes 472

Turning On the Engine 474

Chapter 15: The Flight Simulator 479

Interfacing to the View System 480

Animating the View 482

Flight Simulators 483

The Flight Model 404

The Flight of an Airplane 485

Thrust 487

Lift 489

Controlled Flight 492

 7

The Update() Function 420

The Draw_Horizon Function 421

The Horizon Problem 421

How Horizons Work 422

The Function Code 424

Remapping the Angles 425

Rotating the Horizon 426

Creating the Sky and Ground Polygons 427

The Display() Function 432

A New Backface Removal Function 434

Chapter 13: Fractal Mountains and Other Types of

 Scenery 439

Landscaping the Imagination 440

Using Object Files 440

How an Object File Is Organized 441

Using a Program to Generate Object Files 443

Right-Handed or Left-Handed 444

Fractal Realism 444

Self-Similarity 445

Making Use of Fractals 446

Recursive Graphics 447

Control Surfaces 492

The State Vector 494

From Input to Flight Model 495

The Getcontrols() Function 495

Chapter 16: The Three-Dimensional future 531

Light Sourcing 532

Polygon Smoothing 533

Ray Tracing 534

Implementing A Ray Tracer 535

Bitmapped Animation 536

Do-It-Yourself Bitmaps 539

The Ultimate Flight Simulator 540

Appendix A: Flying the Flights of Fantasy Flight

 Simulator 541

Appendix B: Books on Three-Dimensional Animation 547

Index: 549

References

Ref. 7a - Flights of Fantasy – Programming 3-D Video Games in C++ by Christopher Lampton (ISBN:

1878739182).

Ref. 7b - Polygon Databases - Is a Digital Terrain Elevation Database (DTED) really a Polygon

Database?, Jed Margolin, http://www.jmargolin.com/patents2/pilotrefs/PolygonDatabases2.pdf

