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Analysis of Flights of Fantasy 
 

Jed Margolin 
 

 

{Company’s} Mr. {Person’s} Prior Art References  

 

Flights of Fantasy, Christopher Lampton (The Waite Group 1993).  Discusses computer graphics 
algorithms for the purpose of generating perspective scenery for flight simulators.  Includes 
source code examples. 
 

 

Flights of Fantasy – Programming 3-D Video Games in C++ by Christopher Lampton (ISBN: 1878739182). {Ref. 

7a} Mr. {Person’s} characterization of the book does not do the book justice. This is an excellent book that teaches 

practical computer graphics including 3D graphics. Only a small part of it is about generating perspective scenery. 

Scenery is taught in Chapter 13: Fractal Mountains and Other Types of Scenery (Pages 439 – 455). That’s 17 

pages out of a 556 page book. From page 440: 

 

So far, though, we've populated our world with very few objects-a cube here, a pyramid there. 
How do we build up something that looks like the scenery in the real world? 
 
Landscaping the Imagination 

 
Building scenery for a flight simulator is a tedious task, but the results can be worthwhile. So far, 
we've given you no tools in this book for this task other than ASCII text files that can hold object 
descriptions and that can be edited with an ASCII text editor. Ambitious readers, however, may 
want to write their own scenery- and object-design utility that uses the mouse, the joystick, or 
the keyboard to drag polygons around and to build buildings, mountains, and other pieces of the 
landscape. You should be aware, though, that such programs are difficult to write, with much of 
the difficulty lying in the user interface itself. 
 
Without such a utility, you have two alternatives for developing scenery for your flight simulators: 
edit the ASCII object descriptors by hand or write custom programs for generating specific types 
of scenery. In this chapter, we'll give you some tips about both methods. 

 

Lampton then teaches the use of fractals for generating perspective scenery. If {Company} generated fractal terrain 

instead of using the DTED the FAA would not have certified it. And the system would also have been useless for 

synthetic vision. 

 

The Lampton Flight Simulator is a Simulator. It does not contain the elements needed to fulfill FAA’s definition of 

synthetic vision. As previously discussed, according to FAA:  

 

Synthetic vision means a computer-generated image of the external scene topography from the 
perspective of the flight deck that is derived from aircraft attitude, high-precision navigation 
solution, and database of terrain, obstacles and relevant cultural features. 

 

The Lampton Flight Simulator does not use the DTED and is not used with a real, physical aircraft. 

 

However, there is information relevant to the DTED. In Chapter Eight Polygon-Fill Graphics it teaches the same 

method of storing polygons as is explained in my article Polygon Databases - Is a Digital Terrain Elevation 

Database (DTED) really a Polygon Database? {Ref. 7b} 

 



 2 

Lampton teaches the use of a Point List (vertex type  *vertex;  // Array of vertices in object) and a Face List 

(polygon_type  *polygon;  // List of polygons in object) because (page 269):  

 

It would be wasteful to store two separate lists of vertices, so we've defined one of these lists (the 
one in the polygon structure) as a list of pointers that point at the vertex descriptors in the list 
maintained by the object structure. This concept is illustrated in Figure 8-4. 
 

Figure 8-4 makes it clearer than the program snippet. The following is from Lampton CHAPTER EIGHT 

POLYGON-FILL GRAPHICS (page 269): 

-------------------- 

The Object-Type Structure 
 

Now we need a structure that will describe an object made up of polygons, similar to the shape_type 

structure that we used in Chapter 7 for storing wireframe shapes. Here's the structure definition: 

 

struct  object_type {  

int  number_of_vertices;   //  Number of vertices in object  

int  number_of_polygons;  // Number of polygons in object 

int  x,y,z;     // World coordinates of  

       //    object's Local origin  

polygon_type  *polygon;   // List of polygons in object 

vertex type    *vertex;    // Array of vertices in object 

int  backface_removal;   // Do we want backface removal? 

}; 
 

You'll notice that much of this structure is redundant. We've seen some of these same fields in the 
polygon_type structure. Why do we need a list of vertices in both the polygon structure and the object 
structure? The reason is that sometimes we'll want to treat a polygon as a list of vertices; at other times 
we'll want to treat an object as a list of vertices. It would be wasteful to store two separate lists of 
vertices, so we've defined one of these lists (the one in the polygon structure) as a list of pointers that 
point at the vertex descriptors in the list maintained by the object structure. This concept is illustrated in 
Figure 8-4. 

 
The backface_removal field might look mysterious to you. We'll discuss this field momentarily. 

 
------------------- 
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Lampton also discusses the basics of Polygon Smoothing (page 535): 

-------------- 

CHAPTER SIXTEEN THREE-DIMENSIONAL FUTURE 
 
Polygon Smoothing  
 
No amount of light sourcing can turn a polygon-fill object into a completely realistic representation of an 
actual object. The problem is that real objects, unlike polygon-fill objects, have curves. With some 
exceptions (such as crystalline structures), nature isn't made of polygons. There are techniques, however, 
that can turn a surface made out of polygons into a smoothly curved surface, at least on the computer 
screen. The most popular of these techniques are Gouraud and Phong shading. 
 

Gouraud shading is the simpler of the two, though it produces slightly less realistic results than 
Phong shading. Instead of filling polygons with a solid color based on the angle of that surface relative to 
a light source, Gouraud shading interpolates the color of each pixel on each scan line inside the polygon, 
based not only on the light-sourced color of the polygon but on the colors of adjacent polygons as well 
and the distance of the pixel from the edges of the polygon. Pixels near the center of the polygon are 
given the color that all of the pixels in the polygon would be given using the simple light sourcing 
techniques described earlier, but pixels toward the edge of the polygon have colors closer to those of 
adjacent polygons. Phong shading uses much the same technique, though the calculations used to 
determine the colors of the pixels are a bit more complex. 
 
Compared to ordinary polygon-fill graphics, Gouraud and Phong graphics require a great many 
computations and are therefore quite slow. At present, it's not likely that a straightforward implementation 
of either technique could be used in a real-time flight simulator. However, at least one popular three-
dimensional game - Links, the golf simulation from Access Software - uses 
 
533 
 
FLIGHTS Of FANTASY 
 
rendering techniques that look suspiciously close to either Phong or Gouraud shading. This is made 
possible by the fact that Links is not a real-time simulation. The player watches each scene drawn on the 
display over a period of seconds. Such slow rendering would be unacceptable in a flight simulator, where 
the out-the-window view is constantly changing and at least a dozen frames a second are required to 
make the animation seem smooth. But in Links, the view of the golf course only changes when the ball is 
hit and therefore remains static for long periods of time. And the high quality of the graphics is well worth 
the amount of time required to produce them. 
 

The results produced by these polygon-smoothing techniques are a dramatic improvement over 
the polygon-fill techniques we've used in this book. Will it be possible in the future to use them in a flight 
simulator? Almost  certainly. In fact, simplified versions of these techniques have already found their way 
into several recent flight simulators. 
----------------- 

 

The following is what is in the Lampton book. The first is the Table of Contents. The second is a more detailed list of 

the contents. 

 
Flights of Fantasy – Programming 3-D Video Games in C++, Christopher Lampton, The Waite Group, 

1993 
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