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Reverse Perspective Transformation 
 

Jed Margolin 
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As shown in Figure M1 the Viewer is at coordinates (-Xv0, -Yv0). 

 

The Ground is at the line x = Ax0. The Ground is actually the Database Address. For this 2D example, it is 

only a line. 

 

The display is centered at the Origin and has the slope  -e1y/e1x. The display is perpendicular to the 

Viewer’s Boresight (line of sight vector). The distance between the Viewer and the center of the Monitor is 

‘d’. 

 

The Viewer’s Boresight passes through the Origin (the center of the display) and intersects the Ground at 

coodinates (Ax0,Ay0). 

 

The Viewer’s coordinates are always referenced to the coordinate system. There is no separate Viewer 

coordinate system. When the Viewer moves, the Display moves with the Viewer and everything (Display 

and Ground) is translated to place the center of the display back to the Origin. This is also true if the Viewer 

were to change the Boresight. 

 

For each Viewer position and Boresight, the following are constants: 

 

1.  The Viewer’s position (-Xv0,-Yv0). 

 

2.  The Viewer’s Boresight. 

 

3.  The location of the Ground (x= Ax0). 
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We want to know, for a given displacement (position) on the display, where would the line from the Viewer 

that passes through that position continue on to intersect the Ground? 

 

Referring to Figure M2: 

 

The equation for a line is:  y = m*x + b. 

 

The slope of the Boresight line is: Yv0/Xv0. The Boresight line intersects the Origin so b = 0. 

 

Therefore, for the Boresight Line:   y = Yv0/Xv0 * x  . 

 

The slope of the line that defines the monitor is: -e1y/e1x. It also passes through the Origin. 

 

Therefore, for the Display line: y = -e1y/e1x * x . 

 

Figure M2 is a better look at the display. 

 

For displacement dsy along the vertical face of the Monitor we want to determine (sx,sy). 
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Let’s zoom in more on the Display in Figure M2 by looking at Figure M3. 
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We know that dsy
2
 = sx

2
 + sy

2
 

 

The equation for the Display Line is y = m*x + b  where m = e1y/e1x  and b = 0.  

For now we will use y = m*x . 

 

Slope m is also the slope of sy/sx. 

 

dsy
2  

= sx
2
 + sy

2
  

 
so 

 

dsy
2  

= sx
2
 + (m*sx)

2
        // [sy = m*sx] 

   
so that 

 

dsy
2  

= sx
2
 + m

2
 * sx

2
 

 
            

= sx
2
 (1 + m

2
) 

 

sx
2
 = dsy

2
/(1+m

2
) 

 

sx = dsy / ÷(1+m
2
) 
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and therefore, since 

 

sy = m *sx  // m = e1y/e1x   
 
Substituting for m gives: 

 

sx = dsy / ÷[1+(e1y/e1x)
2
] 

 

sy = [e1y/e1x] * sx  =  [e1y/e1x] * dsy / ÷[1+(e1y/e1x)
2
] 

 

We will note that dsy / ÷[1+(e1y/e1x)
2
] is common to both terms (it’s sx) so, to make the following 

work easier we will call w = dsy / ÷[1+(e1y/e1x)
2
] 

 

sx = w 

 

sy = [e1y/e1x] * w 
 
Knowing the Display vector (e1x, e1y) and the displacement dsy along the vertical face of the Monitor we 

have calculated the point (sx, sy) on the Display. 

 

With that we can calculate the slope of the line from the Viewer to that point. 

 

The slope of the line is: 

 

           (sy - Yv0) 

m2 =  ------------- 

           (sx - Xv0) 

 
(We are calling it m2 to distinguish it from the previous m.) 

 

m2 = [(e1y/e1x) * w  - Yv0] 

           --------------------------- 
      (w  - Xv0) 

 
This makes m2 a function with dsy as the only independent variable. 

 

We have a point on the line, namely (Xv0,Yvo), so we can solve: 

 

Yvo = m2 * Xv0 + b 

 
so 

 

b = Yv0 - (m2 * Xv0) 
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                   (sy - Yv0) 
b = Yv0 -   -------------  * Xv0 

                   (sx - Xv0) 

 

since sy = (e1y/e1x * w) and  sx = w  

 

                   [(e1y/e1x * w) - Yv0] 

b = Yv0 -   ---------------------------  * Xv0 

                            (w - Xv0) 

 
We will repeat it to give it the same color, 

 

                   [(e1y/e1x * w) - Yv0] 

b = Yv0 -   ---------------------------  * Xv0 

                            (w - Xv0) 
 
and repeat m2 for the same reason. 

 

m2 = [(e1y/e1x) * w  - Yv0] 

           --------------------------- 

    (w  - Xv0) 
 

 
Therefore, the point where the line intersects with the Ground (at Ax0) is 

 

Ay = m2 * Ax0 + b 

      

    [(e1y/e1x) * w  - Yv0]  * Ax0           Yv0 - {[e1y/e1x * w - Yv0]}  * Xv0 

=  -------------------------------------   +    --------------------------------------------- 
                 (w  - Xv0)                                              (w -Xv0) 

 
We can put them all over the same denominator, 

 

  =  [(e1y/e1x) * w  - Yv0]  * Ax0    +   Yv0 - {[e1y/e1x * w - Yv0]}  * Xv0 

      ---------------------------------------------------------------------------------------- 

                                            (w  - Xv0)                                        
 
And notice there are some common terms. 

 

  [(e1y/e1x) * w  - Yv0]  * Ax0    +   Yv0  -  {[e1y/e1x * w - Yv0]} * Xv0 

  ----------------------------------------------------------------------------------------- 
                                            (w  - Xv0)                                        
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Rearrange them slightly. 

 

  [(e1y/e1x) * w  - Yv0]  * Ax0    - {[e1y/e1x * w - Yv0]} * Xv0    + Yv0 

  ------------------------------------------------------------------------------------------ 

                                            (w  - Xv0)                                        

 

 

     [(e1y/e1x) * w  - Yv0]  * [ Ax0  - Xv0 ]   + Yv0 

Ay =   ---------------------------------------------------------- 
                           (w  - Xv0)                                        

 

 

Where      w = dsy / ÷[1+(e1y/e1x)
2
] 

 

 
If the Display is perpendicular to the Boresight, the slope e1y/e1x is found by rotating the Boresight vector 

by 90 degrees and normalizing it as shown in Figure M4. 
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Translate the Viewer to the Origin. The point that had been at the origin, P(0,0) becomes  

p(Xv0, Yv0). Rotating it by 90 degrees. 

 

     X'= X*COS(a) - Y*SIN(a)  

 

     Y'= X*SIN(a) + Y*COS(a) 

 
Sin(90) = 1, Cos(90) = 0 
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     X'= X*0 - Y*1  

 

     Y'= X*1 + Y*0 

 
So the point P becomes P( -Yv0, Xv0)  with px = -Yv0 and py = Xv0. 

 

Normalizing it to produce Normalized Px and Normalized Py (Npx and Npy): 

                                 

 NPx = -Yv0/÷[Xv0
2
 + Yv0

2
] 

                                  

 NPy = Xv0/÷[Xv0
2
 + Yv0

2
] 

 

 

nPx is e1x0.  

 

nPy is e1y0.  

 
For a Display of height h, they become h*nPx and h*nPy. 

 

h*nPx = -Yv0/÷[Xv0
2
 + Yv0

2
] * h 

h*nPy =  Xv0/÷[Xv0
2
 + Yv0

2
] * h 

 

 

                       h * -Yv0/÷[Xv0
2
 + Yv0

2
]      -Yv0 

e1y0/e1x0 =   -------------------------------  =   ---------  =  -Yv0/Xv0 

                       h * Xv0/÷[Xv0
2
 + Yv0

2
]        Xv0 

 

w = dsy / ÷[1+(e1y/e1x)
2
] = dsy / ÷[1 + (Yv0/Xv0)

2
] 

 
 

 

 

       [Equation M1] 

 

 

 

 

◊[Xv0
2
 + Yv0

2
] is the distance from the Viewer to the center of the display (which Möller calls ‘d’) and is 

built into the Xv0 and Yv0 coordinates. If Xv0 and Yvo change. the Display moves with the Viewer and 

everything (Display and Ground) is translated to place the center of the display back to the Origin. This is 

also true if the Viewer were to change the Boresight. 
 

 

     [-Yv0/Xv0 * w  - Yv0]  * [ Ax0  - Xv0 ]   + Yv0 

Ay =   ------------------------------------------------------------- 

                           (w  - Xv0)                                        

 

Where  w = dsy / ÷[1+ (Yv0/Xv0)
2
] 
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To find the limits of the viewing triangle, dsy is the distance from the origin to the top of the screen point 

(e1x, e1y) and has a length =  [÷[e1x
2
 + e1y

2
] 

 
It can be stated as:    

 

  e1x = -Yv0/◊[Xv0
2
 + Yv0

2
] 

  e1y = Xv0/◊[Xv0
2
 + Yv0

2
] 

 

  e1x
2
 = Yv0

2
/ [Xv0

2
 + Yv0

2
] 

  e1y
2
 = Xv0

2
/ [Xv0

2
 + Yv0

2
] 

 

dsy
2
 = Yv0

2
/ ◊ [Xv0

2
 + Yv0

2
] + Xv0/ ◊ [Xv0

2
 + Yv0

2
] 

       

dsy = Yv0/◊ [Xv0
2
 + Yv0

2
] + Xv0/ ◊ [Xv0

2
 + Yv0

2
] 

 

      dsy  =    (Yv0 + Xv0) 

         ---------------- 

                 ÷ [Xv0
2
 + Yv0

2
] 

 

 
Therefore, the limit for the top of the display is: 

 

 w =        dsy     (Yv0 + Xv0) 

                     ------------                      =    --------------------------- 

                   ÷[1+ (Yv0/Xv0)
2
]  ÷ [Xv0

2
 + Yv0

2
]  * ÷[1+ (Yv0/Xv0)

2
] 

 

 
The limit for the bottom of the display is: 

 

 w =           dsy     (-Yv0 - Xv0) 

                     ------------                      =    --------------------------- 

                   ÷[1+ (Yv0/Xv0)
2
]  ÷ [Xv0

2
 + Yv0

2
]  * ÷[1+ (Yv0/Xv0)

2
] 

 
Plug them into: 

 

     [-Yv0/Xv0 * w  - Yv0]  * [ Ax0  - Xv0 ]   + Yv0 

Ay =   ------------------------------------------------------------- 
                           (w  - Xv0) 

 
The results are shown graphically in Figure M5 
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This is for a 2D World. For a 3D World add an axis that is normal to the X and Y axes. Call it Z.  

 

The Ground is still perpendicular to the X axis so we will make the Z axis a clone of the Y Axis. 

   

 

 

     [Equation M2] 

 

 

 

 

 

 

     

      [-Zv0/Xv0 * w  - Zv0]  * [ Ax0  - Xv0 ]   + Zv0 

Az =   ------------------------------------------------------------- 
                           (w  - Xv0)                                        

 

Where  w = dsz / ÷[1+ (Zv0/Xv0)
2
] 
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This puts the axes in a non-standard orientation with the X Axis Up, the Y Axis to the Right, and the Z Axis 

into the screen. 

 

The Axes can all be swapped around to suit the Viewer’s preferences. 

 

 

This method gives us the ability to scan the display, producing the memory addresses that correspond to each 

pixel on the display. Each memory address can contain a color, or it can contain an elevation, or it can 

contain both. 

 

But there are some problems if the memory contains elevations.  

 

1.  An elevation might not project onto the pixel that produced the address unless we are using orthographic 

projection. And with a perspective projection there might be several elevations that map to the same pixel. 

 

2.  If we use this method only for determining the viewing pyramid we might miss elevations beyond the 

border that should be displayed because of their elevation. 

 

3.  A subtle error is that, for a 3D world, making the display perpendicular to each axis does not give us the 

ability to roll the Viewer although it does work for pitch and yaw. 

 

One solution is to rotate the memory coordinates to account for Roll. 

 

     X'= X*COS(a) - Y*SIN(a)  

 

     Y'= X*SIN(a) + Y*COS(a) 

 

 
The other might be to go back to using the e vectors for the Display. 

 

The e vectors for a 3D world would be: 

 

e1(x, y, z)  

 
 and  

 

e2(x, y, z) 

  
The equations might be as follows: 
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      [Equation M3] 

 

 

 

 
 

 

 

 

 

 

 

Except, it’s not going to work because the e vectors have no z value. 

 

Somehow we have not accounted for it in either axis. It’s like we deliberately set it to zero in order to make 

the calculations easier, or maybe to even make them possible. 

 

Is that what Möller did, at the expense of having the system responsive to Roll angles? 

 

 

Jed Margolin 

VC Highlands, NV 

November 8, 2009 
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.end 

 

    

  [(e1y/e1x) * w  - Yv0]  * [ Ax0  - Xv0 ]   + Yv0 

Ay =   ------------------------------------------------------------- 
                           (w  - Xv0)                                        

 

Where  w = dsy / ÷[1+(e1y/e1x)
2
] 

 

 

 

     [(e2y0/e2x0) * w  - Zv0]  * [ Ax0  - Xv0 ]   + Zv0 

Az =   ------------------------------------------------------------- 
                           (w  - Xv0)                                        

 

Where  w = dsz / ÷[1+(e2y/e2x)
2
] 

 


