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ABSTRACT: A review of iterated transformation

image compression is presented. Generalization of sim-
ple iterated function system fractal generating algorithms
to an automated iterated transformation algorithm used

to compress grgygnlle lmngu is reviewed, an;'\n-ﬂ

images from the Digital Terrain Elevation Database are
presented, and compared with encodings using adaptive
discrete cosine transformations, and mean residual vector

quantization image compression techniques.

Because of the increasing use of digital imagery, there
is currently considerable interest in the image compres-
sion problem. In particular, image compression is a cur-
rent and growing necessity for Navy applications includ-
ing storage and transmittal of maps, intelligence pho-
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image compression has led to the establishment by the

General interest in

Joint Photographic Experts Group of a standard based
on discrete cosine transforms (ADCT). There is also an
on going effort in the research community to design im-
proved vector quantization (VQ) methods, and to develop
methods which utilize wavelet transformations. A rela-

tively new approach to the i image compression problem

iterated transformations, has been presented by Jacquin
{1,2]. This meihod has iis foundation in the theory of iter-
ated function systems (IFSs), developed by Hutchinson (3]
and Barnsley [4], and recurrent iterated function systems
[5]. The iterated transform algorithm has received partic-

ular interest because of the fractal nature of the encoded
images, and because there has been much speculation,
but little information available on the capabilities of the
method. The first sections of this paper review the basic
methodology of the iterated transform image compression
technique. This is followed by a section on the compres-
sion of the Digital Terrain Elevation Database (DTED)
in which results obtained using iterated transformations
are compared to ADCT and VQ methods.
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2. BACKGROUND: SIMPLE EXAMPLES

This example serves as a simple illustration of some con-
cepts involved in the iterated transform image-encoding
scheme. This example is based on iterated function sys-
tems. The main concept is that the image of a set (a
cted from

< eI

Sierpinski gasket, in this rm\ can be reconstru

a set of transformations which may take less memory to

Consider the three transformations shown in figure 1
They are
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Denote the n-fold composition of W with itself as W°".
Define A, = W(An-1) = W°®(Ao) and arbitrarily choose
Ao as the unit square with lower left corner at the origin
(ie, Ag = {(z, )10 € 2 € 1,0 € y £ 1}). Then 2
n — 00, the set A, converges to a limit set A,. In fact,

for any compact set S C R?, W*™(S) — Ao 88 n — 00.
Figure 2 shows Ao, A;, Az, As, A4, As and Aeo.

That all compact initial sets converge under iteration
to Ao is important—it means that the set A, is defined
by the w; only.

Each w; is determined by 6 real values, so that for this
example 18 floating point numbers are required. In single
precision, this requires 72 bytes. The memory required to

store an image of the set depends on the resolution; the
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Figure 2. Aq, A1, A2, As, A¢, As, and A.

Ax image requires 258 x 256 x 1 bit = 8192 bytes of
memory. The resulting compression ratio in this example
is 113.8:1.

It is inherently difficult to find an IFS which will encode
an arbitrary set. Furthermore, in this example, the image
of the Sierpinski gasket is described by a set of pixels, each
being either black or white. The problem of more inter-
est for image compression applications is the encoding of
gray scale images (i.e., an image in which each pixel has
many possible gray levels, not just black or white). There
are two generalisations to the simple example given above
which make encoding gray scale images feasible. First, in-
stead of each w; operating on the entire image, the w; are
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ory of IFS’s has been extended by Barnsley and Jacquin
{6] to aliow transforms to operate on only parts of the set
rather than the entire set, in a method they call recur-
rent iterated function systems. The particular section, or

domain, which each w; acts on must be stored as part
of the encoded image. Second, the MMM
to be generalised to thres dimensions. A'ighgy scale ém-
age can be thought of as a three-dimensiohat g, eaé

nival hawutre an o o0 eaac o2 o
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A form for the transformations which is convenient for
encoding gray scale images is,
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where the first eight transformations are restricied o acé .
on the region {(z,y)|0 < z < 1/2,0 < y < 1/3}, and the
second eight transformations are restricted to act on the
region {(z,4)|1/2< 2 <1, 0 < y < 1/2}. Similar to the
example given above, the map W is defined as the unioa -
of the wy’s. Let values of z = 0 be represented

z = 1 as white, with intermediate values asshades of gray.
The initial image A, is arbitrarily chosen .as 7 = 0.5 for-
{(z.9)10 < 2 < 1,0 < y < 1). The first six iterates, and . -
the fixed point are shown in figure 3. In practice, the
values of z,y, and z are discretised. Whern the image-in .
this example is discretised as 128 x 128 pixels, and S-bits.
per pixel, the encoder used in this paper [6,7] sutomat-
ically encodes this image (using an equivalent set of 16.-

transformations) with the resulting compression equal to

356:1.

as hlack,

3. ENCODING AND DECODING AN IMAGE

The question that must be answered is; given an im- -
age, what is the method for finding transformations that
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Figure 3. Ag, A1, Az, As, Ay, As, As, and Ay for the 16
transformations listed in the text.

encode it? The contractive mapping fixed point theo-
rem suggest how to answer this question. The contractive
mapping fixed point theorem guarantees that, if F is a
complete metric space, and themapW:F 4 F is a con-

tractive transformation, there exists a unique fixed point

ey rran s a

N 1 A -1 an L) A -
|W| = A = liMpoe W "(Ap), for any Ag € r.
Since the limit set is a fixed point,

This formula suggests how one would seek the transfor-
mations wy, ..., w, which encode a given image. The goal

is to have the fixed point |W| spproximate the desired im-
age f. The transformations should therefore be chosen to
satisfy equation 2 with |W| replaced by f, i.e., the trans-
formations, when applied to f, should result in f. The
wi(f), ..., wa(f) are said to cover the image f. Refer-
ring back to the two examples in the previous section, it
is seen that, given the Sierpenski triangle, or the fractal

square pattern, by satisfying equation 2 the transforma-

tions encoding these images could be found.

In the two examples, the covering W(f) is exact. Given
an arbitrary set f, it is not possible in general to exactly
cover f with a finite number of transformations of itself.
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The obvious QuESLIOn 18 withn: wWual huypcua il WG Sover-
ing W(f) is approximate? A corollary of the contractive
mapping fixed point theorem, which Barnsley calls the
Collage Theorem, puts a bound on the error between |W|
and f when W(f) does not exactly equal f. The theorem

says that the closer the covering W(!) is to the original

set f, the closer the fixed point |W| will be to £, and that
this is especially true if the transformations composing W

are very contractive.

In figure 4 part of the encoding process for this image
is illustrated. The figure demonstrates how one section
of the image, called a range (R;), is covered as closely
as possible by applying a transformation w; to a domain
(D;). To complete the encoding process, a w; and D;
must be found to cover each Ry, and the R;’s must com-

pletely tile the image. To facilitate compact specification

of the transformations, the sets from which D’s and R'’s
are choeen are restricied to be geometrically simpie, and
limited in number. The w;’s must be chosen such that
upon iteration, a fixed point is reached. In light of the
collage theorem, it is surprising that when the map W
is constructed, it is not necessary to impose any contrac-
tivity conditions on the individual transforms. The nec-
essary contractivity requirement is that W be eventually
coniraciive [8]. A map W : F — F is eventually contrac-
tive if there exists a positive integer m such that the m'™*
iterate of W is contractive. Note that in the gray scale
example of section 2, half of the transformations are not
contractive in the z direction.

As shown for the simple examples in the previous sec-
tion (figures 2 and 3), decoding an image is performed
by starting with an arbitrary initial image, and iterating
the transformations until the fixed point is reached. This
process is shown for an encoding of “tank farm” in fig-
ure 5. The compression of this image was 8.66:1, and the
PSNR = —20log (™24 5) = 33.6 dB.

4. APPLICATION TO DTED

Application of image compression to geographic map
data is of particular interest to the Navy. Geographic map
data comes in a variety of formats, and there has been ex-
tensive work done in compressing map databases for vari-

ous applications. In this section, the problem of compres-
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sion of the Digital Terrain Elevation Database (DTED)

is addressed. The database consists of elevation data for
a grid of longitude-latitude coordinates where the grid
points are roughly 100 meters apart. A complete descrip-
tion of DTED can be obtained from the Defence Mapping
Agency. Alward and Nicholls [9] examined hierarchical
data structures as applied to DTED. The data structures

result io some dats wmpr-'c!'. -]thnn'h rnmnmnn

was not the primary goal of that investigation. In this
section, the problem of interest is evaluating the perfor-
mance of the iterated transform (IT) method on DTED.
This would be useful for applications where data compres-
sion is the primary concern, and issues such as hierarchical
structure, access time, and decoding time are of secondary

importance. As & means of evalustion, the DTED images

Figure 5. Inmdnmge,ﬁmiume,wndnum,udmth
xmm{otmencodm;o{the ‘tukfnrm'ima;e.

were aiso compressed with an ADCT and mean residual
vector quantization algorithm (MRVQ). DTED data can
be thought of in terms of a gray scale image where the lon-
gitude and latitude identify the pixel, and the elevation is
the pixel value. For the purpose of possible Navy spphc.—
tion, the data were transformed from their original linear
scale between 0 and 10000 meters, to a lop.nthmlc scale

between 0 and 255 . The qaaa‘ fmmbinn =@_-u|0-== a -mnr_%

sion from 14 bits per datapoint to 8 “bits per datapoint.
This logarithmic scale, shown in figure 8, represents lower
elevations more accurately than higher elevations; the ra-
tionale for this being that lower elevations areas sre more
likely to be important for Navy applications, and that
nea.rly all of the earth’s surface (particularly near coast-

The iterated transform al -‘mnﬂnm was ll‘mhhd ‘to il n

used in reference 6 except for one significant modifies:
tion. The algorithm was modified to encode sections of'the
image on coastlines with increased acciraty. For iriage
sections that contained coastline, the error critetia was
tightened. This resulted in more segmentation, and there-
fore higher fidelity in these areas. The ADCT algoritim
used was similar to that described by Chen and Pratt
{10], except for a modification siilar to that described
above for the iterated transform aigorithm. To emcode
coastlines more accurately, the decision level quantiser
table was compressed for sections of the image on coast-

lines. Improving the fidelity at the coastlines resulted in a
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Figure 6 . The scale transformation used for the DTED data.

decrease in the overall compression-fidelity performance.
The MRVQ algorithm used was based on the method de-
scribed by Linde et al. [11). Codebooks were generated
from 2 sections of DTED similar to (but not including)
the section tested.

The compression methods being considered are prop-

etly spplied to images with a dynamic range sppropriate

to the number of bits used to store the image, and a rel-
atively smooih distribution of gray level intensity values
over this range. In figure 7, the 512 x 512 section of
DTED, which is 1* east of that section shown in figure 8
is displayed where sea level is displayed in gray, all pixels
with an elevation that is a multiple of 100 (+ 2) are dis-

Played in black, and all other elevations being displayed in

white. It appears that the majority of the data contained
in this section of DTED were created from 100-meter con-
tour maps, the result being that a disproportionate num-
ber of datapoints are at multiples of 100 meters. In the
southeast corner of the map, it can be seen that the num-
ber of points at 100 meters are far more dispersed. In
this section of the map, roughly the number of datapoints
that would be expected based on random elevations are
present. The biased quantization illustrated by figure 7 is
evident in other sections of DTED.

Because of this biased quantisation, the reconstructed
image resulting from compressed encodings will have a
smoother distribution of pixel values than the original im-
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Figure 7. Pixels of value 100 2 meters.

Table 1. Results for encodings of figure 8.

Method | Compression | PSNR(dB) | Figure
IT 44.86:1 32.98
IT 21.49:1 35.08 5
ADCT 47.33:1 30.51
ADCT 21.08:1 34.92 10
MRVQ 32.00:1 31.36 1
Table 2. Results for encodings of Sgure 12
Method | Compression | PSNR(dB) | Figure
IT 104.11:1 34.09
IT 42.08:1 39.03 13
ADCT 75.53:1 33.86
ADCT 43.76:1 38.14 14
MRVQ 32.00:1 36.93 15

age. This will lead to an srtificially poorer measured §-
delity of the encoded images. In areas of DTED where
the data are “properly” digitized, this situation wili not
occur. Because not all the data are quantized at a course
resolution, but only most of it, taking advantage of this
quantization is not simple. Although it has not been done
here, before applying lossy compression techniques such as
iterated transforms. ADCT, or VQ. regnantisation of the

R SRSRRR2IS, RS Ay U8 Vi aCQUAGLISSVION O1 e
data in such a way that the majority of the datapoints re-
tain their correct values could resuit in overall improved
performance.

1.’;.
8
:P‘
)
[#.]
[T
~
x

Tests in this section were perform
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Figure 8 .

Figare 11 . The decoded MRVQ image of figure 8.

Original 5° to 5° 25.6' E, 61° to 61° 12.8' N. Figure 12 . Ongunl 6° to 6° 256’ E, 61° 12:8’ to 01' 25.6' N.
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sections located in the fiords of Norway. These test images
are shown in figures 8 and 12. Figure 8 covers the section
of the earth from 5° to 5° 25.6° east and 61° to 61° 12.8’

north and fizure 12 the section from 8° to §° 25.8° east
SEW/A WAL ©aI\Z llbulc Ad& WUT DOLMIVAU MIVILI VU &Y.V TODV

and 61° 12.8’ to 61° 25.6’ north. These sections of DTED
were chosen because the topology of the fiords served as a
severe test of the fidelity of the compression methods. A
more thorough study where a broad area of the database
containing a representative amount of flat and mountain-
ous regions would be necessary in determining the com-
pression and fidelity possible for the complete database.

Figures 9, 10, and 11 show gray scale reconstructed
images from typical encodings of the image in figure 8 us-
ing iterated transforms, ADCT, and MRVQ respectively.
Similarly, figures 13, 14, and 15 show reconstructed im-
ages from encodings of the image in figure 12. The fidelity
and compression of these (and other) encodings are sum-

marized in tables 1 and 2.

8. CONCLUSIONS

The compression versus fidelity results indicate that the

iterated transform algorithm performed well when com-
pared with the ADCT and MRVQ methods. Other im-

portant factors to consider when comparing these com-
pression ilgt‘ﬁishﬁi are access time, decoding time, and
encoding time. Iterated transforms, along with ADCT are
variable bit-rate methods, which would result in slower
access times than the fixed bit rate MRVQ algorithm. It-
erated transform encoding requires an extensive search
procedure, making it slower than MRVQ, which also re-
quires a search, albeit a shorter one. Iterated transform
encoding is also alower than ADCT, which requires only a
transformation and quantization. For most applications,
encoding would be a one-time procedure; therefore, en-
coding time would not necessarily be an important con-
cern. If an application required all or a large fraction
of DTED be encoded, then the computer costs for en-
coding become significant. For many applications, the

arnand Af dasrdime am temawa smiokhd ha o anidianl
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ment. The decoding for iterated transforms is a simple
iteration, making it faster than ADCT (where decoding
takes as long as encoding), and slower than MRVQ, which
is essentially a table lookup.
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