

Staple Issue Slip Here \because

POSITION		ID No.	DATE
CLASSIFIER		7	$8{ }^{2}-24 y$
EXAMINER	49		8-10-94
TYPIST		519	S/16
VERIIIER		's\%	6!
CORPS CORR.			
SPEC. HAND			
FILE MAINT.			
DRAFTING			

INDEX OF CLAIMS

POSITION		ID NO.	DATE
CLASSIFIER			
EXAMINER		OLS	
TYPIST		2	9
VERIFIER			4
CORPS CORR.			
SPEC. HAND			
FILE MAINT.			
DRAFTING			

INDEX OF CLAIMS

Clalm		Dale							
番		$\begin{aligned} & 12 \\ & 185 \end{aligned}$	144						
	V		=						
2	2								
3	3								
4	4								
5	5								
6	6ni								
\$9	(7)								
i	8								
114	9								
15	10								
16	11								
117.	12								
	13								
7	14								
19	15								
	16								
8	17								
	18								
25	18								
9	20								\cdots
80	21								
II	23								
22	24								
2 C	25								
10	26								
(2).	27	1							
27	28		흔						
	29	-	18						
	309	\%	,						
32	31	\checkmark	-						
35	32	-							
13	33								
36	34								
34	35								
24.	(36)								
30	37	,							
(3)	38		,						
38	38,	V	L						
	40								
	41								
	42								
	43				i				
	44								
	45								
	46								
	47								
	48								
	49								
	50								

File History Report - References

Other Publications - While copying the 'Other Publications' section of your file history we noticed that one or more pages and/or publications are missing from this portion of the file wrapper contents. Please note that all references have been copied as they appear in the file history. At your request, we will attempt to obtain the missing publication(s) from alternative resources. Please note that additional charges will apply to this service.

United States Patent

2
[54] PLLOT AID USING A SYNTHETIC ENVIRONMENT
[76] Inventor: Jed Margolin, 3570 Pleasant Echo Dr., San Jose, Calif. 95148-1916
[21] Appl. No.: 513,298
[22] Filed: Aug. 9, 1995

Related U.S. Application Data

[63] Continualion of Ser. No. 274,394, Jul. 11, 1994, abandoned.
(51] Int. Cl. ${ }^{\circ}$ \qquad G06F 3/14; G09B 9/30
[52] U.S. CL \qquad 364/449; 364/456; 364/457; 340/990; 340/995; 395/127; 395/129 58] Field of Search 364/449, 455 11, 23, 27, 395/119, 124, 125, 127, 129

References Cited
U.S. PATENT DOCUMENTS

4,028,725	$6 / 1977$	Lewis 340/980
4,213,252	$7 / 1980$	Sullivan et al. .o................... 395/125
4,445,118	411984	Taylor et al. 342/357
4,468,793.	$8 / 1984$	Johnson et al. 375/97
4,485,383	11/1984	Maher 342/352
4,599,620	7/1986	Evans 342/357
4,660,157	411987	Beckwith et al. ..om...............35/101
4,715,005	$12 / 1987$	Heart .1..............................e. 395/125
4,910,674	3/1990	Lerchic 364/443
4,954,837	911990	Baird $364 / 449$
5,005,148	. 411991	Behensky et al.er. 364/578
5,072,396	12/1991	Fitzpatrick et al. $364 / 450$
5,101,356	3/1992	Timothy el tal. 364/449
5,140,532	8/1992	Beckwith et al. 395/101
5,153,836	1011992	Fraughton et al. 364/461
5,179,638	1/1993	Dawson et al. 395/125
5,185,610	211993	Ward et al. 342/357
5,192,208	3/1993	Ferguson et al. 342/169
5,208,590	5/1993	Pitus 3401973
5,296,854	3/1994	Hamitson et al. 340/980
5,302,964	$4 / 1994$	Lewist 345/7
5,317,689	5/1994	Nack et al. 395/163
5,334,991	8/1994	Weils et al. 340/705

OTHER PUBLICATIONS

John Gallant. EDN magazine; Jan. 7, 1993; pp. 31-42 "System revolutionizes surveying and navigation".
Bill Clarke; Aviator's Guide to GPS; 1994; pp. 2 and 3 "GPS Program History".
Magellan Systems Corp, 960 Overiand CL, San Dimas, CA 91773 Sales brochure for GPS receiver with moving map display (MAP 7000), Jan. 1994
Trimble Navigation; 2105 Donley Dr, Austin TX 78758 Sales brochure for Airborne GPS receiver (TNL-1000) (no date is available).
Jeppesen Sanderson, Inc; 55 Inverness Drive East, Englewood, CO 80112 Sales brochure for navigation data base in computer readable form.
U.S. Geological Service, Earth Science Information Center Menlo Park, CA Sales brochure for Digital Elevation Model data, Jun. 1993.

(List continued on next page.)

Primary Examiner-Kevin J. Teska
Assistant Examiner-Tan Nguyen
Allorney, Agent, or Firm-Blakely, Sokoloff, Taylor \& Zaf man

[57]

ABSTRACT
A pilot aid using synthetic reality consists of a way to determine the aircraft's position and attitude- such as by the global positioning system (GPS), a digital data base containing three-dimensional polygon data for terrain and manmade structures, a computer, and a display. The computer uses the aircraft's position and attitude to look up the terrain and manmade structure data in the data base and by using standard computer graphics methods creates a projected three-dimensional scene on a cockpit display. This presents the pilot with a synthesized view of the world regardless of the actual visibility. A seciond embodiment uses a headmounted display with a head position sensor to provide the pilot with a synthesized view of the world that responds to where he or she is looking and which is not blocked by the cockpit or other aircraft structures. A third embodiment allows the pilo to preview the route ahead or to replay previous fiights.

37 Claims, 13 Drawing Sheets

5,566,073

Page 2

OTHER PUBLICATIONS

U.S. Geological Service, Earth Science Information Center, Menlo Park, CA Sales brochurc for Digital Line Graph data, Jun. 1993.
U.S. Deparment of Commerce, National Oceanic and Atmospheric Administration, Washington Aeronautical Chart (paper map).
Atari Games Corp, 675 Sycamore Dr, Milpitas, CA 95035; Sales brochure for coin-operated video game with 3D polygon-based graphics (Steel Talons), 1991.
Ulrich, "Tactical Mapping in Combat Aircraft", IEEE 1988, pp. 74-78.
Raymen et al. "Advanced Terrain Data Processor", IEEE 1994, pp. 636-639.

Patrick et al., "Itars Robust Demonstration System Integration", IEEE 1988, pp. 83-87.
Jacobs et al., "Fractal Image Compression Using Iterated Transforms: Applications to DTED', IEEE 1994, pp. 1122-1128.
Polhemus, P.O. Box 560, Colchesier, VT, Sales brochure for 3D head tracker, Jan. 1994.
Atari Games Corp. 675 Sycamore Dr., Milpitas, GA 95035, Sales brochure for coin-operated video game with 3D, 1991.
Atari Game Corp, 675 Sycamore, Milpitas, CA 95035, Sales brochure for coin-operated video game with 3D polygon--based graphic (Hard Drivin) 1988.

Fig. 1

Fig. 2
U.S. Patent Oct. 15, 1996 Sheet 3 of $13 \quad \mathbf{5 , 5 6 6 , 0 7 3}$

Fig. 3

Fig. 5a

Fig. Wb

Fig. Ga

U.S. Patent

Oct. 15, 1996
Sheet 7 of 13
5,566,073

Side

Fig. 7a

Fig. 8a

Fig. Bc Side View

Fig. 9b

Fig. 9a

U.S. Patent
 Oct. 15, 1996
 Sheet 10 of 13
 $\mathbf{5 , 5 6 6 , 0 7 3}$

Fig. 10 a

U.S. Patent

Fig. 11a

Fig. 13 c

Fig. 13f

Fig. 13e

PLLOT AID USING A SYNTHETIC ENVIRONMENT

This is a continuation of application Ser. No. 08/274,394; filed Jul. 11, 1994, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates to a pijot aid for synthesizing a view. of the world. When flying under Visual Flight Rules (VFR) the normal procedure for determining your position is to rclate what you sec out the window to the information on a paper map. During the day it can be difficult to determine your location because the desired landmark can be lost in the clutter of everything else. When aying at night you see mostly lights. When flying under Instrument Flight Rules (IFR) you must relate the information from various navigation aids to the information on a printed map. You must then interpret the map information in order to avoid flying into objects such as mountains and the like. An improvement in this situation came about when the global positioning system (GPS) became operational and available for civilian use. GPS directly provides map coordinates but you must still, however, interpret the map information. Systems have been developed which use GPS coordinates to access an elec. tronic map which is presented on a display as a flat map. Systems have also been developed that present an apparent three-dimensional effect and some that present a mathematically correct texture-mapped three-dimensional projected display.
Both of these systems require a very large amount of storage for terrain data. The latter system also requires specialized hardware. Their high cost have prevented their widespread adopkion by the avaiation community.
The 1984 patent to Thylor et al. (U.S. Pat. No. $4,445,118$) shows the basic operation of the global positioning system (GPS).
The 1984 patent to Johnson et al. (U.S. Pat. No. 4,468, 793) shows a receiver for receiving GPS signals.

The 1984 patent to Maher (U.S. Pat. No. 4,485,383) shows another receiver for recciving GPS signals.
The 1986 patent to Evans (U.S. Pat. No. 4,599,620) shows a method for determining the orientation of a moving object and producing roll, pitch, and yaw information.
The 1992 patent to Timothy et al. (U.S. Pat. No. 5,101, 356) also shows a method for determining the orientation of a moving object and producing roll, pitch, and yaw information.
The 1993 patent to Ward et al. (U.S. Pat. No. $5,185,610$) shows a method for determining the orientation of a moving object from a single GPS receiver and produclng roll, pitch, and yaw information.
The 1992 patent to Fraughton et al. (U.S. Pat. No. $5,153,836$) shows a navigation, surveillance, emergency location, and collision avoidance system and method whereby each craif determines its own position using LORAN or GPS and transmits it on a radio channel along with the craf's identification infomation. Each craft also 60 receives the radio channel and thereby can determine the position and identification of other craft in the vicinity.
The 1992 patent to Beckwith et al. (U.S. Pal. No. 5,140, 532) provides a topographical two-dimensional real-time display of the terrain over which the aircraft is passing, and 65 a slope-shading technique incorporated into the system provides to the display an apparent three-dimensional effect
similar to that 2
similar to that provided by a relief map. This is accomplished by reading compressed terrain data from a cassette tape in a controlled manner based on the instantaneous geographical location of the aircraft as provided by the aircraft navigational computer system, reconstructing the compressed data by suitable processing and writing the reconstructed data into a scene memory with a north-up orientation. A read control circuit then controls the read-out of data from the scene memory with a heading-up orientation to provide a real-time display of the terrain over which the aircraft is passing. A symbol at the center of display position depicts the location of the aircraft with respect to the terrain, permiting the pilot to navigate the aircraft even under conditions of poor visibility. However, the display provided by this system is in the form of a moving map rather than a true perspective display of the terrain as it would appear to the pilot through the window of the aircraft.

The 1987 patent to Beckwith et al. (U.S. Pat. No. 4,660, 157) is similar to U.S. Pat. No. 5,140,532. It also reads compressed terrain data from a cassette tape in a controlled manner based on the instantancous geographical location of the aircraft as provided by the aircraft navigational computer system and reconstructs the compressed data by suitable processing and writing the reconstructed data into a scene memory. However, instead of providing a topographical two-dimensional display of the terrain over which the aircraft is passing and using a slope-shading technique to provide an apparent three-dimensional effect similar to that provided by a relief map as shown in the ' 532 patent, the :157 patent processes the data to provide a 3D perspective on the display. There are a number of differences between the ' 157 patent and the present invention:

1. The ' 157 Patent stores the map as a collection of terrain points with associated altitudes; the large amount of storage required by this approach requires that a tape be prepared for each mission. The present invention stores terrain data as a collection of polygons which results in a significant reduction of data base storage; larger geographic areas can be stored so that it it not necessary to generate a data base for each mission.
2. The ' 157 . Patent uses a tape cassette for data base storage; the long access time for tape storage makes it necessary to use a relatively large cache memory. The present invention uses a CD-ROM which permits random access to the data so that the requirements for cache storage are reduced.
3. The ' 157 Patent accounts for the aircraft's heading by controlling the way the data is read out from the tape. Different heading angles result in the data being read from a different sequence of addresses. Since addresses axist only at discrete locations, the truncation of address locations causes an unavoidable change in the map shapes as the alrcraft changes heading. The present invention stores terrain as polygons which are mathematically rotated as the aircraft changes attitude. The resolution is determined by number of bits used to represent the vertices of the polygons, not the number of storage addresses.
4. The ' 157 accounts for the roll atuitude of the aircraft by mathematically rotating the screen data after it is projected. The 'I57 Patent does not'show the display being responsive to the pitch angle of the aircraft. In systems such as this the lack of fidelity is apparent to the user. People know what things are supposed to look like and how they are supposed to change perspective when they move. The present invention uses techniques that
have long been used by the computer graphics industry to perform the mathematically correct transformation and projection.
5. The ' 157 shows only a single cockpit display while one of the embodiments of the present invention shows a stereographic head-mounted display with a head sensor. The pilot is presented with a synthesized view of the word that is responsive to wherever the pilot looks; the view is not blocked by the cockpit or other aircrat structures. This embodiment is not anticipated by-the ' 157 patent.
The 1991 patent to Behensky et al. (U.S. Pat. No. 5,005, 148) shows a driving simulator for a video game. The road and other terrain are produced by mathematically transformIng a three-dimensional polygon data base.
The first sales brochure from Atari Games Corp. is for a coin-operated game (Hard Drivin') produced in 1989 and relates to the ' 148 patent. The terrain is represented by' polygons in a three-dimensional space. Each polygon is transformed mathematically according to the position and orientation of the player. After being tested to determine whether it is visible and having the appropriate illumination function performed, it is clipped and projected onto the display screen. These operations are in general use by the computer graphics industry and are well known to those possessing ordinary skill in the art.
The second asles brochure from Atari Games Corp. is for a coin-operated game (Steel Talons) produced in 1991 and which also relates to the ' 148 patent and the use of polygons to represent terrain and other objects.
The 1993 patent to Dawson et al. (U.S. Pat. No. 5,179, 638) shows a a method and apparatus for providing a texture mapped perspective view for digital map systems which includes a geometry engine ihat receives the elevation posts scanned from the cache memory by the shape address generator. A tiling engine is then used to transform the elevacion posts into three-dimensional polygons. There are à number of differences between the '638 patent and the present invention:
6. The ' 638 Patent is for a digital map system only. The matter of how the location and attitude are selected is not addressed. The present invention uses a digital map as part of a system for presenting an aircraft pilot with a synthesized view of the world regardless of the actual visibility.
7. The ' 638 Patent stores the map as a collection of terrain as points with associated altitudes, thereby requiring a large amount of data storage. The terrain points are transformed into polygons during program run-time thereby adding to the processing burden: The present invention stores terrain data as a collection of polygons which results in a significant reduction of data base storage.
8. The present invention also teaches the use of a stereographic head-mounted display with a head sensor. The pilot is presented with a synthesized view of the world that is responsive to wherever the pilot looks; the view is not blocked by the cockpit or other aircraft structures. This embodiment is not anticipated by the ' 638 patent.
The 1994 patent to Hamilton et al. (U.S. Pat. No. 5,296, 854) shows a helicopter virtual display system in which the strucusal outlines corresponding to structual members forming the canopy strucure are added to the head-up display in order to replace the canopy structure clues used by pilots which would otherwise be lost by the use of the head-up display.
The 1994 patent to Lewins (U.S. Pat. No. S,302,964) shows a head-up display for an aircrat and incorporates a
cathode-ray tube image generator with a digital look-up table for distortion correction. An optical system projects an image formed on the CRT screen onto a holographic mirror combiner which is transparent to the pilot's disect view through the aircrat windshield.

The sales brochure from the Polhermus company shows the commercial availability of a position and orientation sensor which can be used on a head-mounted display.

The article from EDN magazine, Jan. 7, 1993, pages 0 31-42, entitled "System revolutionizes surveying and navigation" is an overview of how the global positioning system (GPS) works and lists several manufacturers of commercially available receivers. The article also mentions several applications such as the use by geologists to monitor fault lines, by oil companies for off-shore oil explorations, for keeping track of lower-orbit satellites, by fieet vehicle operators to keep track of their tieet, for crop sprayers to spread fertilizer and pesticides more efficiently, and for in-car systems to display maps for automotive navigation.
The section from "Aviator's Guide to GPS" presents a history of the GPS program.

The sales brochure from Megellan Systems Corp. is for commercially available equipment comprising a GPS receiver with a moving map display. The map that is 5 displayed is a flat map.

The sales brochure from Trimble Navigation is for a commercially available GPS receiver.

The sales brochure from the U.S. Geological survey shows the availability of Digital Elevation Models for all of the United States and its territories.

The second sales brochure from the U.S. Geological survey shows the availability of Digital Line Graph Models for all of the United States and its territories. The data includes: political and administrative boundaries; hydrography consisting of all fowing water, standing water, and wethands; major transportation systems consisting of roads and trails, railroads, pipelines, transmission lines, and airports; and significant manmade structures.

The Washington Sectional Aeronautical Chart is a paper o map published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration that shows the complexity of the information that an aircraft pilot needs in order to lly in the area covered by the map. The other areas of the U.S. are covered by similar maps.
The sales brochure from Jeppesen Sanderson shows that the company makes its navigation data base available in computer readable form.
Accordingly, several objects and advantages of my invention are to provide a system that produces a mathematically correct three-dimensional projected view of the terrain while reducing the amount of storage required for the data base and which can be accomplished by using standard commercially available components. The invention can be used as a real-time inflight aid or it can be used to preview a flight, or it can be used to replay and review a previous flight.

Further objects and advantages of my invention will become apparant from a consideration of the drawings and ensuing description.

SUMMARY OF THE INVENTION

The present invention is a pilot aid which uses the aircraft's position and attitude to transform data from a digital data base to present a pilot with a synthesized as three-dimensional projected view of the world. The threedimensional position is typically determined by using the output of a commercially available GPS receiver. As a safety
check, the altitude calculated by the GPS receiver can be compared to the output of either a standard altimeter or a radio altimeter. Attitude can also be determined from the use of a GPS receiver or it can be derived from standard avionic instruments such as turn-and-bank indicator and gyrocompass. The digital data base represents the terrain and manmade structures as collections of polygons in order to minimize storage requirements. The pilot can select several feature such as pan, tilt, and zoom which would allow the pilot to see a synthesized view of terrain that would otherwise be blocked by the aircraft's structure, especially on a low-wing aircraf. The pilot can also preview the route either inflight or on the ground. Because the system has the ability to save the flying parameters from a flight, the pilot can replay all or part of a previous fight, and can even take over during the replay to try out different flight strategies. Through the use of a head-mounted display with a head sensor, the pilot can have complete range of motion to receive a synthesized view of the world, completely unhindered by the aircraft structure.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram showing the ourput to a single video display.
FIG. 2 is a block diagram showing the output to a head-mounted display.
FIG. 3 is a block diagram showing a system used to plan and/or replay a particular flight.
FIG. 4 is a block diagram showing Computer 107 and Graphics System 108 in FIG. 1, FIG. 2, and FIG. 3.
FIG. 5a shows a simple positive (counter-clockwise) rotation of a point around the origin of a 2 -Dimensional space.

FIG. 56 shows a second positive (counter-clockwise) rotation of a point around the origin of a 2-Dimensional space.

FIG. Ga shows the equivalent three dimensional space of FIG. $5 a$ where the rotation is around the Z axis.
FIG. $6 b$ is a re-orientation of the axes of FIG. $6 a$ showing rotation around the Y axis.
FIG. $6 c$ is a re-orientation of the axes of FIG. $6 a$ showing rotation around the X axis.
FIG. 7a is a side view showing the projection of a point in three-dimensions projected onto a two-dimensional screen.
FIG. $7 b$ is a top view showing the projection of a point in three-dimensions projected onto a two-dimensional screen.
FIG. $8 a$ is a cabinet-projected three-dimensional representation of the viewing pyramid.
FIG. $8 b$ is a 2D top view of the viewing pyramid.
FIG. $8 c$ is a 2 D side view of the viewing pyramid.
FIG. 9a shows an unclipped polygon.
FIG. $9 b$ shows how clipping the polygon ini FIG. $9 a^{\circ}$ produces additional sides to the polygon.
FIG. 10a shows the impending crossover from Geographic Data Block 21 to Geographic Data Block 22.
FIG. 10b shows the result of a crossover from Geographic Data Block 21 to Geographic Data Block 22.
FIG. 11a shows the impending crossover from Geographic Data Block 22 to Geographic Data Block 32 .
FIG. $11 b$ shows the result of a crossover from Geographic Data Block 22 to Geographic Data Block 32.

6
FIG. $12 a$ through FIG. $12 f$, and FIG. $13 a$ through FIG. $13 f$ show the procedure for generating the polygon data base from the Digital Elevation Model data.

DETAILED SPECIFICATION

FIG. 1 shows the basic form of the invention. GPS Receiver 101 receives signals from the satellites that make up the global positioning system (GPS) and calculates the aircraft's position in three dimensions. Altimeter 104 provides an output of the aircraft's altitude as a safety check in the event GPS Receiver 101 malfunctions. Tum-and-bank Indicator 102 and Gyrocompass 103 provide the aircraft's attitude which comprises heading, roll, and pitch. CD-ROM 15 Data Base 105 contains the digital data base consisting of three-dimensional polygon data for terrain and manmade structures.
Computer 107 is shown in more detail in FIG. 4 and uses commercially available integrated circuits including processor 404, the MPC601, from Motorola Semiconductor Inc. The MPC601 is a fast 32-bit RISC processor with a floating point unit and a 32 K Byte eight-way set-associative unified instruction and data cache. Most integer instructions are executed in one clock cycie. Compilers are available for . ANSI standard C and for ANSI standard FORTRAN 77. Computer 107 also contains ROM 405, RAM 406, Avionics Interface 401, CD-ROM Interface 402, Control Panel Interface 403, Graphics Systems Interface 407, and-Hard Drive Interface 408.
Computer 107 uses the aircraft's position from GPS Receiver 101 to look up the terrain and manmade structure data in CD-ROM Data Base 105. This data is organized in geographic blocks and is accessed so that there is always the 35 proper data present. This is shown in FIG. 10a. FIG. $10 b$ shows that when the aircraft crosses from Block 21 to Block 22, the data from Blocks 10, 20, and 30 are discarded and data from Blocks 13, 23, and 33 are brought in from CD-ROM Data Base 105. FIG. $11 a$ and FIG. $11 b$ show the

40

Computer 107 uses the aircraft's position from GPS Receiver 101 and altitude information from Turn-and-bank Indicator 102 and Gyrocompass 103 to mathematically operate on the terrain and manmade structure data to present three-dimensional projected polygons to Graphics System 108. As shown in FIO. 4, Graphics System 108 consists of a commercially available graphics integrated circuit 409, the 86C805, made by S3 Incorporated. This integrated circuit contains primidves for drawing lines in addition to the standard SVGA graphics functions. The 86C805 controls DRAM 410 which is the video memory consisting of two buffers of 1024×768 pixels, each of which is 8 bits deep. The video to be displayed from DRAM 410 is sent to RAMDAC 411 which is an integrated circuit commercially avallable from several manufacturers, such as Brooktree and AT\&T: RAMDAC 411 contains a small RAM of 256×24 bits and three 8 -bit DACs. The RAM section is a color table programimed to assign the desired color to each of the 256 combinations possible by having 8 bits/pixe! and is combined with three video DACs, one for each coior for Video Display 109.
Video Display 109 is a color video display of convertional design such as a standard CRT, an LCD panel, or a plasma display panel. The preferred size of Video Display 109 is $19^{\prime \prime}$ although other sizes may be used.

FIO. 2 shows the use of the system with Head Mounted Display 201. Head Mounted Display Attitude Sensors 202

7

provide Computer 107 with the orientation of Head Mounted Display 201. This orientation is concatenated with the aircratt's orientation provided by Turn-and-bank Indicator 102 and Gyrocompass 103. As a consequence the pilot can turn his or her head and view the three-dimensional synthesized view of the transformed terrain and manmade structure data unhindered by the aircraft's structure. With the appropriate sensors for engines, ficel tanks, doors, and the like, the pilot can be presented with synthesized representations of these objects in their correct locations. For example, the pilot would be able to 'look' at a fuel tank and 'see' if it is running low. The pilot would also be able to 'see' if there is a problem with an engine and, on multi-engine gircraft, identify which one. By using a technique similar to that taught in the 1992 patent to Fraughton et al. (U.S. Pat. No. $5,153,836$) where each aircraft determines its own position using LORAN or GPS and ransmits it on a radio channel along with the aircraft's identification information so that each craft also receives the radio chansel and can thereby determine the position and idendification of other craft in the vicinity, these other aircraft can be presented in the present invention as three-dimensional objects in their correct positions to alert the pilot to their presence and take evasive maneuvers as required.
Hard Disk Drive 110 is for recording the aircraft's position and orientation data for later playback in order to seview the fight. Because the information presented on Video Display 109 is a function of the aircraft's position and orientation data applied to the CD-ROM Data Base 105, it can be reconstructed later at any time by storing just the aircraft's position and orientation data and applying it again to CD-ROM Data Base 106, as long as the data base is still available. The dircraft's position and orientation data requires fewer than 100 bytes. By recording it every 0.1 seconds, an hour requires about 3.6 Megabytes of storage. (100 bytes/updatex 10 updates/secondx60 seconds $/ \mathrm{min} \times 60$ minutes/hoursabout 3.6 Megabytes) Therefore, a standard 340 Megabyte hard drive would atore about 94 hours of operation.
A method for previewing a route that has not been flown before is shown in FIG. 3. GPS Receiver 101, Tum-and bark Indicator 102, Gyrocompass 103, and Altimeter 104 are replaced by User Flight Controls with Force Feedback 301 and Aerodynamic Model Processor 302. Aerodynamic Model Processor 302 is a processor that implements the aerodynamic mathematical model for the type of aircraft desired. It receives the user inputs from User Fight Control with Force Feedback 301, performs the mathematical calculations to simulate the desired aircraft, and supplies output back to the Force Feedback part of the controls and to Computer 107. The ourputs supplied to Computer 107 simulate the outputs normaily supplied to GPS Receiver 101, Turn-and-bank Indicator 102, Gyrocompass 103, and Altimeter 104. In this way, Computer 107 executes exactly the same program that it would perform in the in-fight system. This permits the pilot to practice flying routes that he or she has not flown before and is particularly useful in practicing approach and landing at unfamiliar airports. This system does not need to be installed in an aircraft; it can be installed in any convenient location, even the pilot's home. Control Panel 106 allows the pilot to select different operating.features. For example, the pilot can choose the 'look angle' of the display (pan and tilt). This would allow the pilot to see synthesized terrain coresponding to real terrain that would otherwise be blocked by the aircraft's structure like the nose, or the wing on a low .wing aircraft. Another feature is the zoom function which provides mag-

See FIG. $5 a$.

If we want to rotate the point again there are two choices
J. Simply sum the angles and rotate the original points, in which case:
$x^{\prime \prime}=x \cdot \cos (a+b)-r \cdot \sin (a+b)$
$r=x \cdot \operatorname{Sin}(a+b)+r^{+} \cos (a+b)$

2. Rotate X^{\prime}, Y^{\prime} by angle b

$x^{*}=x^{+} \cdot \cos (b)-r^{*} \sin (b)$
$\gamma^{*}=X^{*} \sin (b)+Y^{*} \cos (b)$

See FIG. 56.

With the second method the errors are cumulative. The first method preserves the accuracy of the original coordinates; unfortumately it works only for rotations around a single axis. When a series of rotations are done together around two or three axes, the order of rotation makes a

9
diffcrence. As an example: An airplane always Rolls, Pitches, and Yaws according to its own axes. Visualize an airplane suspended in air, wings straight and level, nose pointed North. Roll 90 degrees clockwise, then pitch 90 degrees "up". The nose will be pointing East. Now we will 5 start over and reverse the order of rotation. Start from straight and level, pointing North. Pitch up 90 degrees, then Roll 90 degrees clockwise, The nose will now be pointing straight up, where "up" is referenced to the ground. If you have trouble visualizing these motions, Just pretend your hand is the airplane.
This means that we cannot simply keep a running sum of the angles for each axis. The standard method is to use functions of Euler angles. The method to be described is 15 easier and faster to use than Euler angle functions.
Although FIG. 5 e represents a two dimensional space, it is equivalent to a three dimensional space where the rotation is around the \mathbf{Z} axis. See FIG. 6a. The equations are:
$X=X^{*} \operatorname{Cos}(z a)-\gamma^{*} \operatorname{Sin}(z a)$
$\gamma=X^{*} \operatorname{SIN}(z a)+\gamma^{*} \cos (z a)$

By symmetry the other equations are:
$Z=Z^{0} \cos (y a)-X^{4} \sin (y a)$
$X=Z^{*} \sin (y a)+X^{*} \cos (y a)$
See FIG. 6 b .
$\begin{aligned} & \text { Sec } \\ & \text { and } \\ & r=\end{aligned}$
$r=r^{m} \cos (x a)-2^{*} \operatorname{son}(x a)$
$z=\gamma^{*} \operatorname{SN}(x a)+z^{2} \cos (x a)$
See FIG. 6 .

From the ship's frame of reference it is at rest; it is the Universe that is rotating. We can either change the equations to make the angles negative or decide that positive rotations are clockwise. Therefore, from now on all positive rotations are clockwise.
Consolidating Equations 1,2 , and 3 for a motion consisting of rotaions za (around the Z axis), ya (around the Y axis), and $x a$ (around the X axis) yields:
$X^{*}=X^{*}\left[\operatorname{Cos}(y a)^{*} \operatorname{Cos}(z a)\right]+Y^{*}\left[-\operatorname{Cos}(y a){ }^{*} \operatorname{SIN}(z a)\right]+Z^{*}$ [SIN(ya)]
$Y^{\prime}=X^{*}\left[\operatorname{SIN}(x a) * \operatorname{SIN}(y a)^{*} \operatorname{COS}(z a)+\operatorname{COS}(x a) * \operatorname{SIN}(z a)\right]+$ $Y^{*}\left[-\operatorname{SIN}(x a) * \operatorname{SIN}(y a)^{*} \operatorname{SIN}(z a)+\operatorname{COS}(x a)^{*} \operatorname{COS}(z a)\right]+$ $\left.Z^{*}[-\operatorname{Sin}(x a))^{+} \operatorname{COS}(y a)\right]$
$Z=X^{*}\left[-\operatorname{COS}(x a)^{*} \operatorname{SIN}(y a)^{*} \operatorname{COS}(z a)+\operatorname{SIN}(x a) * \operatorname{SIN}(z a)\right]$ $+Y^{*}\left[\operatorname{COS}(x a)^{*} \operatorname{SIN}(y a)^{*} \operatorname{SIN}(z a)+\operatorname{SIN}(x a)^{*} \operatorname{COS}(z a)\right]+$ $z^{*}\left[\cos (x a)^{*} \cos (y a)\right]$
(The asymmetry in the equations is another indication of the
difference the order of rotation makes.)
The roain use of the consolidated equations is to show that so any rotation will be in the form:
$x=A x \times x+B x^{*} Y+C x^{*} z$
$r=A y^{4} X+8 y^{*} y^{2}+C y^{\prime} Z$

If we start with three specific points in the initial, absolute coordinate system, such as:
Px=(1,0,0)
Py=(0,1,0)
$P z=(0,0,1)$
after any number of arbitrary rotations,
$\mathrm{Px}^{\prime}=(\mathrm{XA}, \mathrm{YA}, \mathrm{ZA})$
$\mathrm{Py}^{\prime}=(\mathrm{XB}, \mathrm{YB}, \mathrm{ZB})$
$\mathrm{Pz}^{\prime}=(\mathrm{XC}, \mathrm{YC}, \mathrm{ZC})$

Equanion 1

Equation 2

Equation 3

The ship's X unit vector ($1,0,0$), the vector which, according to the ship is straight ahead, transforms to ($\mathrm{A}, \mathrm{Bx}, \mathrm{Cx}$). Thus the position of the ship in tems of the Universe's coordinates can be determined. The complete transformation for the Ship to look at the Universe, taking into account the poition of the Ship: For X,Y,Z in Universe reference and X ', $\mathbf{Y}^{\prime}, \mathbf{Z}^{\prime}$ in Ship's reference

$$
\left[\begin{array}{l}
x \\
r \\
z
\end{array}\right]=\left[\begin{array}{lll}
A x & B x & C x \\
A y & B y & C y \\
A z & B z & C z
\end{array}\right] \cdot\left[\begin{array}{l}
x-x T \\
y-y T \\
z-z T
\end{array}\right]
$$

INDEPENDENT OBJECTS

To draw objects in a polygon-based system, rotating the vertices that define the polygon will rotate the polygon.
The object will be defined in its own coordinate system 6S (the object "library") and bave associated with it a set of unit vectors. The object is rotated by rotating its unit vectors. The object will also have a position in the absolute Universe.

11

When we want to look at an object from any frame of reference we will tranaform each point in the object's library by applying a rotation matrix to place the object in the proper orientation. We will then apply a translation vector to place the object in the proper position. The rotation matrix is derived from both the object's and the observer's unit vectors; the translation vector is derived from the object's position, the observer's position, and the observer's unit vectors.
The simplest frame of reference from which to view an 10 object is in the Universe's reference at $(0,0,0)$ looking along the X axis. The reason is that we already have the rotation coeficients to look at the object. The object's unit. vectors supply the matrix coefficients for the object to look at (rotate) the Universe. The inverse of this matrix will allow
ship 2:

$$
\left[\begin{array}{l}
x \\
r \\
z
\end{array}\right]=\left[\begin{array}{lll}
A x 2 & A y 2 & A z 2 \\
B x 2 & B y 2 & B z 2 \\
C x 2 & C y 2 & C z 2
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
x 72 \\
\gamma 72 \\
z 72
\end{array}\right]
$$

Ship 1 looks at the Universe looking at Ship 2:

$$
\begin{aligned}
& {\left[\begin{array}{l}
x^{n} \\
r^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
A x 1 & B x 1 & C x I \\
A y 1 & B y l & C y 1 \\
A z 1 & B z 1 & C z 1
\end{array}\right] \cdot\left[\begin{array}{c}
X-X I I \\
r-y T I \\
z-Z T I
\end{array}\right]} \\
& \cdots\left[\begin{array}{ccc}
A x 1 & B x 1 & C x 1 \\
A y 1 & B y 1 & C y 1 \\
A z 1 & B z 1 & C z 1
\end{array}\right]+\left[\begin{array}{c}
X \\
\gamma \\
Z
\end{array}\right]-\left[\begin{array}{lll}
A x 1 & B x 1 & C x 1 \\
A y 1 & B y 1 & C y 1 \\
A z 1 & B z 1 & C z 1
\end{array}\right] *\left[\begin{array}{c}
X T 1 \\
Y T 1 \\
Z I I
\end{array}\right]
\end{aligned}
$$

the Universe to look at (rotate) the object. As discussed previously, the unit vectors form an Orthonormal matrix; its inverse is simply the Transpose. After the object is rotated, it is translated to its position (its position according to the Universe) and projected. More on projection later.
A consequence of using the Unit Vector method is that, whatever orientation the object is in, it will always Roll, Pitch, and Yaw according to ITS axes.
For an object with unit vectors:

$$
\left[\begin{array}{lll}
A x & B x & C x \\
A y & B y & C y \\
A z & B z & C z
\end{array}\right]
$$

and absolute position [XT,YT,ZT], and [X,Y,Z] a point from the object's library, and [$X^{\prime}, Y^{\prime}, Z^{\prime}$] in the Univerae's reference, The Universe looks at the object:

$$
\left[\begin{array}{l}
x \\
r \\
Z
\end{array}\right]=\left[\begin{array}{lll}
A x & A y & A z \\
B x & B y & B z \\
C x & C y & \dot{C} z
\end{array}\right]=\left[\begin{array}{l}
x \\
\gamma \\
z
\end{array}\right]+\left[\begin{array}{l}
x T \\
Y \\
Z T
\end{array}\right]
$$

For two ships, each with unit vectors and positions:

(XT1,YT1,271) Ship 1 Posilion

Expand:

$\left(\left[\begin{array}{lll}A x 2 & B x 2 & C_{2} 2 \\ A y 2 & B y 2 & C_{y 2} \\ A z 2 & B z 2 & C_{22}\end{array}\right]+\left[\begin{array}{l}x \\ y \\ z\end{array}\right]+\left[\begin{array}{c}x 72 \\ Y / 2 \\ Z 72\end{array}\right]\right)$
Using the Disurtbutive Law of Matrices:
$40=\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y l & B y 1 & C_{y 1} \\ A z 1 & B z 1 & C l 1\end{array}\right] \cdot\left(\left[\begin{array}{lll}A x 2 & A y 2 & A z 2 \\ B x 2 & B y 2 & B z 2 \\ C_{22} & C_{y 2} & C z 2\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)+$

45

$$
\left[\begin{array}{lll}
A x 1 & B x 1 & C x 1 \\
A y 1 & B y 1 & C y 1 \\
A z 1 & B z 1 & C z 1
\end{array}\right] \cdot\left[\begin{array}{l}
x 72 \\
y 72 \\
z 72
\end{array}\right]
$$

Using the Associative Law of Matrices:
$50=\left(\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y 1 & C y l \\ A z 1 & B z 1 & C z 1\end{array}\right] *\left[\begin{array}{lll}A x 2 & A y 2 & A z 2 \\ B x 2 & B y 2 & B z 2 \\ C x 2 & C y 2 & C z 2\end{array}\right]\right) *\left[\begin{array}{c}x \\ \gamma \\ z\end{array}\right]+$
$5 s$
$\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A_{y 1} & B y 1 & C y 1 \\ A z 1 & B 21 & C_{21}\end{array}\right] \cdot\left[\begin{array}{l}x 72 \\ Y 72 \\ Z 72\end{array}\right]$

Substituting back into Equation 10 gives:

65
$\left[\begin{array}{lll}A_{x 1} & B x 1 & C_{x 1} \\ A_{y 1} & B y 1 & C_{y 1} \\ A_{z 1} & B z 1 & C_{z 1}\end{array}\right] \cdot\left[\begin{array}{l}x 72 \\ \gamma 72 \\ z 72\end{array}\right]-\left[\begin{array}{lll}A x 1 & B x 1 & C_{x 1} \\ A_{y 1} & B_{y 1} & C_{y 1} \\ A_{z 1} & B_{21} & C_{z 1}\end{array}\right] \cdot\left[\begin{array}{l}x 71 \\ y 71 \\ z 7\end{array}\right]$

Thcrefore:
$\left[\begin{array}{l}x^{\prime \prime} \\ y^{\prime \prime} \\ z^{\prime \prime}\end{array}\right]=\left(\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y 1 & C y 1 \\ A z 1 & B z 1 & C x 1\end{array}\right] \cdot\left[\begin{array}{ccc}C x 2 & A y 2 & A z 2 \\ B x 2 & B y 2 & B z 2 \\ C x 2 & C y 2 & C z 2\end{array}\right]\right)$ equation 11 $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]+\left[\begin{array}{lll}A x 1 & B x 1 & C_{x 1} \\ A y 1 & A y 1 & C_{y!} \\ A z 1 & B_{z 1} & C_{z 1}\end{array}\right] \cdot\left[\begin{array}{l}x 72-X F 1 \\ Y 72-Y T I \\ Z 72-Z T 1\end{array}\right], 10$

Now let:
$\left[\begin{array}{lll}A x & B_{x} & C_{x} \\ A_{y} & B_{y} & C_{y} \\ A_{z} & B_{z} & C_{z}\end{array}\right]=\left[\begin{array}{lll}A x 1 & B x 1 & C_{x 1} \\ A_{y 1} & B y 1 & C_{y 1} \\ A x 1 & B_{z 1} & C_{z 1}\end{array}\right] *\left[\begin{array}{lll}A x 2 & B x 2 & C x 2 \\ A y 2 & A y 2 & C_{y 2} \\ A z 2 & A_{z 2} & C z 2\end{array}\right]$
This matrix represents the orientation of Ship 2 according to Ship 1's frame of reference. This concatentation needs to be done only once per update of Ship 2 .
Also let:

$$
\left[\begin{array}{l}
x T \\
r T
\end{array}\right]=\left[\begin{array}{lll}
A x 1 & B x 1 & C_{x 1} \\
A y 1 & B y 1 & C_{y 1} \\
A \varepsilon 1 & B_{21} & C x 1
\end{array}\right] \cdot\left[\begin{array}{l}
x T 2-x T 1 \\
\gamma 72-y T 1 \\
272-2 T 1)
\end{array}\right] \cdot 25
$$

(XT,YT,ZT) is merely the position of Ship 2 in Ship 1 's frame of reference.

This also needs to be done only once per update of Ship 2. Therefore the transformation to be applied to Ship 2's library will be of the form:

$$
\left[\begin{array}{l}
x^{w} \\
r \\
z
\end{array}\right]=\left[\begin{array}{lll}
A x 1 & B x 1 & C x 1 \\
A_{y 1} & B y 1 & C y 1 \\
A x 1 & B x 1 & C x 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
x r \\
y \\
z r
\end{array}\right]^{\text {EQUATION } 14}
$$

Therefore, every object has six degrees of freedom, and any object may look at any other object.

SUMMARY OF TRANSFORMATLON ALOORTHMS: Define Unil Vectocr: $\quad\left\|P_{x}\right\|=\left(A z_{1} \lambda_{y}, A_{z}\right)$
$\|P\| 1=(B x, B y ; B 2)$
If Roll: $A_{y}=A_{2}=B_{x}=B_{2}=C x=C y=0$
$A y^{\prime}=A y{ }^{*} \operatorname{Cos}(x a)-A z * \operatorname{SIN}\left(x^{\prime}\right)$
$A z^{\prime}=A y^{*} \operatorname{SN}\left(\mathrm{x}(\mathrm{xa})+A z^{*} \operatorname{COS}(x a)\right.$
$B y=B y * \operatorname{Cos}(x a)-B r z_{*}^{*} \operatorname{Sin}(x a)$
$B_{z}=8 y * \operatorname{SIN}(x a)+z_{z}{ }^{*} \cos (x a)$
$C^{\prime}=C^{*} * \cos \left(x^{\prime}\right)-c_{2}{ }^{*} \sin (x a)$
$C_{2}^{\prime}=C_{y} \cdot \sin (x a)+C_{z} * \cos (x a)$
$A x^{\prime}=A z{ }^{*} \sin (\mathrm{ya})+A x^{\circ} \operatorname{Cos}(\mathrm{ya}){ }^{\circ}$
$B z^{\prime}=8 z^{*} \operatorname{Cos}(4)-8 x^{*} \operatorname{Sin}(8)$
$B x^{\prime}=B_{z}{ }^{*} \operatorname{SIN}(y)+B x^{*} \cos (y)$
$C^{\prime}=Q^{*} \cdot \cos \left(\frac{1}{}\left(\underline{)}-C_{x}{ }^{*} \sin (\mathrm{y})\right.\right.$
14 Yaw: $\operatorname{Cr}^{\prime}=\boldsymbol{Q}^{*} * \sin (y)+\alpha^{*} \cdot \cos (y a)$
$A X^{\prime}=A x{ }^{*} \cos (z a)-A y^{*} \operatorname{SI}(z a)$
$A y^{\prime}=A x * \operatorname{St}(2 a)+A y * \operatorname{Cos}(z a)$
$8 x^{\prime}=8 x^{*} \operatorname{Cos}(z a)-8 y * \operatorname{SIN}(2 a)$
$C^{\prime}=C^{\prime}=\cos (z a)-c_{y} * \operatorname{SIN}(2 a)$
$C y^{\prime}=C x * \sin (x a)+C y^{*} \cos (x a)$

5 The resultant unit vectors form a transformation matrix. For $\mathbf{X}, \mathrm{Y}, \mathrm{Z}$ in Universe reference and $\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}, \mathrm{Z}$ ' in Ship's reference

$$
\left[\begin{array}{c}
x \\
r \\
z
\end{array}\right]=\left[\begin{array}{lll}
A x l & B x l & C_{x 1} \\
A y l & B y l & C y l \\
A z l & B_{21} & C z!
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
\gamma \\
z
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
A x 1 & B x l & C x 1 \\
A y l & B y 1 & C y 1 \\
A z 1 & B z 1 & C z l
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
r \\
z
\end{array}\right]
$$

The ship's x unit vector, the vector which according to the ship is straight ahead, transforms to ($\mathrm{Ax}, \mathrm{Bx}, \mathrm{Cx}$). For a ship in free space, this is the acceleration vector when there is forward thrust. The sum of the accelerations determine the velocity vector and the sum of the velocity vectors deter-- mine the position vector (XT,YT,ZT). For two ships, each with unit vectors and positions:
$\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y 1 & C y 1 \\ A_{z 1} & B z 1 & C z 1\end{array}\right]$ Ship 1 Unit Vectors
(x T1, mr1, $2 \pi 1$)
Ship 1 Posidion
$\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y l & C y 1 \\ A x 1 & B z 1 & C_{11}\end{array}\right]$
Shíp 2 Uait Vecion
(X72,772 7 72)
Ship 2 Postion
Ship 1 looks at the Universe:

40 $\left[\begin{array}{l}x \\ r \\ z\end{array}\right]=\left[\begin{array}{lll}A x 1 & B x 1 & C_{21} \\ A y l & B y 1 & C_{y l} \\ A z 1 & B_{21} & C_{z 1}\end{array}\right] \cdot\left[\begin{array}{l}x-X T \\ y-\gamma T \\ z-z T\end{array}\right]$
($\mathbf{X}, \mathbf{Y}, \mathrm{Z})$ in Ualvarse (x, r, z) in Ship 1 trume of reference
45 Ship 1 looks at Ship 2:
$\left[\begin{array}{lll}A x & B x & C x \\ A y & B y & C y \\ A_{z} & B_{z} & C_{z}\end{array}\right]-\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y l & B y 1 & C y 1 \\ A z 1 & B z 1 & C_{z 1}\end{array}\right] \cdot\left[\begin{array}{lll}A x 2 & B x 2 & C x 2 \\ A y 2 & B y 2 & C_{y} \\ A z 2 & B_{z 2} & C_{z 2}\end{array}\right]$.
(Ship 2 arientation rechaive to Stip 1 orienution)
$\left[\begin{array}{l}X T \\ Y T \\ Z T\end{array}\right]=\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y 1 & C y 1 \\ A_{z 1} & B x 1 & C z 1\end{array}\right] \cdot\left[\begin{array}{l}x T 2-X T 1 \\ Y T 2-F T \\ Z 72-Z T 1\end{array}\right]$
(Ship 2 postion in Slip i's frame of references)
$\left[\begin{array}{l}x \\ r \\ z\end{array}\right]=\left[\begin{array}{lll}A x & B x & C x \\ A y & B y & C y \\ A z & B z & C_{z}\end{array}\right] \cdot\left[\begin{array}{l}x \\ y \\ z\end{array}\right]+\left[\begin{array}{l}x T \\ r T \\ z T\end{array}\right]$
(X, Y, Z) in Stip 2 Ubrary
(X, Y, Z) in Stap 1 reference

VISBILITY AND ILLUMINATION

After a polygon is transformed, whether it is a terrain polygon or it belongs to an independently moving object
such as another aircraft, the next step is to determine its illumination value, if indeed, it is visible at all.
Associated with each polygon is a vector of length 1 that is normal to the surface of the polygon. This is obtained by using the vector crossproduct between the vectors forming any two adjacent sides of the polygon. For two vectors $\mathrm{V} 1=[\mathrm{x} 1, \mathrm{y} 1, \mathrm{z}]$ and $\mathrm{V} 2=[\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2]$ the crossproduct $\mathrm{V} 1 \times \mathrm{V} 2$ is the vecior $\left((y)^{*} z 2-y 2^{*} z 1\right),-\left(x 1^{*} z 2-x 2^{*} z 1\right),(x]^{*} y 2-$ $\left.\left.x 2^{*} y 1\right)\right]$. The vector is then normalized by dividing it by its length. This gives it a length of 1 . This calculation can be done when the data base is generated, becoming part of the data base, or it can be done during program run time. The tradeoff is between data base size and program execution lime. In any event, it becomes part of the transformed data.
After the polygon and its normal are transformed to the aircraft's frame of reference, we need to calculate the angle between the polygon's normal and the vector from the base of the nommal to the aircraft. This is done by taking the vector dot product. For two vectors $\mathrm{V} 1=\{x 1, y 1 ; z 1]$ and V2 $=[x 2, y 2,22]$, V1 dot V2 $=$ length(V1)*length(V2)* ${ }^{*} \cos (\mathrm{a})$ and is calulated as ($x 1^{*} x 2+y 1^{*} y 2+z 1^{*} z 2$). Therefore:

A cosine that is negative means that the angle is between 90 degress and 270 degrees. Since this angle is facing away from the observer it will not be visible and can be rejected and not subjected to further processing. The actual cosine value can be used to determine the brightness of the polygon for added realism

CLIPPING

Now that the polygon has been transformed and checked for visibility it must be clipped so that it will properly fit on the screen after it is projected. Standard elipping routines are well known in the computer graphics industry. There are six clipping planes as shown in the 3D representation shown in FIG. 8a. The 2D top view is shown in FIG. 8b, and the 2D side view is shown in FIG. 8c. It should be noted that clipping a polygon may result in the creation of addition polygon sides which must be added to the polygon description sent to the polygon display routine.

PROJECTION

As shown in FIG. 7a, X^{\prime} is the distance to the point along the X axis, Z ' is the height of the point, X s is. the distance from the eyepoint to the screen onto which the point is to be projected, and Sy is the vertical displacement on the screen. $Z / X '$ and $\mathrm{Sy} / \mathrm{Xs}$ form similar triangles so: $\mathrm{Z}^{\prime} / \mathrm{X}^{\prime}=\mathrm{Sy} / \mathrm{Xs}$, therefore $S y=X^{*}{ }^{*} Z^{\prime} / X^{\prime}$. Likewise, $Y^{\prime} / X^{\prime}=S x / X_{s} 80$ $S x=\mathrm{Xs}^{*} \mathrm{Y}^{\prime} / \mathrm{X}^{\prime}$ where Sx is the horizontal displacement on the screen. However, we still need to fit Sy and Sx to the monitor display coordinates. Suppose we have a screen that is 1024 by 1024 . Each axis would be plus or minus 512 with $(0,0)$ in the center. If we want a 90 degree field of view (plus or minus 45 degrees from the center), then when a point has $Z^{\prime} \mid X^{\prime}=1$ it must be put at the edge of the screen where its value is 512 . Therefore $\mathrm{Sy}=512^{*} \mathrm{Z}^{\prime} / \mathrm{X}$. (Sy is the Screen Y-coordinate). Therefore:

Sy $=K^{*} Z^{\prime} X^{\prime}$ Sy is the vertical coordinate on the display $S x=K^{*} Y^{\prime} / X^{\prime}$ S x is the horizontal coordinate on the display K is chosen to make the viewing angle fit the monitor coordinates. If K is varied dynamically we cind up with a $z 00$ m lens effect. And if we are clever in implementing the We then test additional adjacent points until we run out Then we start over with another three points.

When we are done generating polygons for: Geographic Data Block we go back and examine them; any polygon that is 'too big' is broken down into smaller polygons. This is to make sure there are always enough polygons on the screen to provide a proper referance for the pilot. (A single large polygon on the screen would not have any apparent motion.) Finally, the polygons are assigned colors and/or shades so that adjacent polygons will not blend into each other
The other USGS data base used is the Digital Line Graph data which includes: political and administrative boundaries; hydrography consisting of all flowing water, standing water, and welands; major transportation systems consisting of roads and trails, railroads, pipelines, transmission lines, and airports; and significant manmade structures. The Digital Line Graph data is two-dimensional. In the present invention features such as water, roads, railroads, and pipelines are represented as polygons with elevations determined from the Digital Elevation Model data. Transmission lines and significant manmade structures are defined as threedimensional objects made of polygons and are placed according to the elevations determined from the Digital Elevation Model data. The different types of objects are lagged so that by using Control Panel 106 the pilot can seiect them to be highlighted by category or by specific object. For example, the pilot can choose to have all airports highlighted or just the destination airport. The pilot can also choose to have a specific highway highlighted.
Data from additional digital data bases can also be incorporated. An example of such a data base is from Jeppesen Sanderson whose NavData Services division provides aeronautical charts and makes this information available in digital form.
While preferred embodiments of the present invention have been shown, it is to be expressly understood that modifications and changes may be made thereto and that the 3 present invention is set forth in the following claims.
1 claim:

1. A pilot aid which uses an aircraft's position and attitude to transform data from a digital data base to present a pilot with a synthesized three dimensional projected view of the 40 world comprising:
a position determining system for locating said aircraft's position in three dimensions;
a digital data base comprising verrain data, said terrain data repreventing real terrestriad terrain as at least one polygon, said terrain data generated from elevation data of said real terrestrial terrain;
an attitude determining system for determining said aircraft's orientation in three dimensional space;
a computer to access said terrain data according to sald aircraft's position and to transform said terrain data to provide three dimensional projected image data according to said aircraft's orientation; and
a display for displaying said three dimensional projected ss image data.
2. The pilot aid of claim 1, wherein said position determining system comprises a standard system for receiving and processing data from the global positioning system.
3. The pilot aid of claim 1, wherein said attiude deter- 60 mining system comprises a standard avionics system.
4. The pilot aid of claim 1, wherein said digital data base comprises a cd rom disc and cd rom drive.
5. The pilot aid of claim 1, further comprising a control panel to select at least one operating feature.
6. The pilot aid of claim 5 , wherein said at least one operating feature comprises at least one feature selected
from a group consisting of panning a viewpoint of said three dimensional projected image, tilting a viewpoint of said three dimensional projected tmage, zooming a viewpoint of said three dimensional projected image, and providing a three dimensional projected image of a route ahead.
7. The pilot aid as described in claim 1 wherein said digital data base further comprises structure data, said structure data representing manmade structures as one or more polygons.
8. The pilot aid as described in claim 1 wherein said elevation data comprises an array of elevation points, wherein each said polygon representing said terrain defines a plane, wherein in a first region of terrain represented by said at least one polygon each elevation point within each said polygon is within a first distance of said plane of each said polygon.
9. The pilot aid as described in claim 8 wherein in a second region of said terrain represented by said at least one polygon each elevation point within each said polygon is within a second distance of said plane of each said polygon in said second region, said second distance different from said first distance.
10. The pilot aid as described in claim 9 wherein no elevation point within each said polygon in said first region and said second region is above said plane of said polygon.
11. The pilot aid as described in claim 8 wherein no elevation point within each said polygon in said first region is above said plane of said polygon.
12. A pilot aid which uses an aircraft's position and attilude to cransform data from a digital data base to present a pilot with a synthesized three dimensional projected view of the world comprising:
a position determining system for locating said aircraft's position in three dimensions;
a digital data base comprising terrain data, said terrain data representing real terrestrial terrain as at least one polygon, said terrain data generated from elevation data of said real terrestrial terrain;
an attilude determining system for determining said aircrat's orientation in three dimensional space;
a computer to access said terrain data according to said aircraft's position and to transform said terrain data to provide three dimensional projected image data according to said aircraft's orientation; and
a mass storage memory for recording said aircrat position data and said aircrafi's atticude data for allowing a flight of said aircraft over said terrain to be displayed at a later time.
13. The pilot aid of claim 12, wherein said position determining system comprises a standard system for receiving and processing data from the global positioning system.
14. The pilot aid of claim 12, wherein said attitude determining systems comprises a standard avionics system.
15. The pilot aid of claim 12, wherein said digital data base comprises a ed rom and a cd rom drive.
16. The pilot aid of claim 12, further comprising a control panel to select at least one operating feature.
17. The pilot aid of claim 16, wherein said at least one operating feature comprises at least one feature selected from a group conslating of panning a viewpoint of said three dimensional projected image, tilting a viewpoint of said three dimensional projected image, zooming a viewpoint of said three dimensional projected image, providing a three dimensional projected image of a route ahead, and providing a three dimensional projected image of a previous fight.
18. The pilot aid as described in claim 12 wherein said digital data base further comprises structure data, said struc-
ture data representing manmade structures as one or more polygons.
19. The pilot aid as described in claim 12 wherein said elevation data comprises an array of elevation points, wherein each said polygon representing said terrain defines 5 a plane, wherein in a first region of terrain represented by said at least one polygon each elevation point within each said polygon is within a first distance of said plane of each said polygon.
20. The pilot aid as described in claim 19 whersin in a second region of said terrain represented by said at least one polygon each elevation point within cach said polygon is within a second distance of said plane of each said polygon in said second region, said second distance different from said first distance.
21. The pilot aid as described in claim 20 wherein no 15 elevation point within cach said polygon in said first region and said second region is above said plane of said polygon.
22. The pilot aid as described in claim 19 wherein no clevation point within each said polygon in said first region is above said plane of said polygon.
23. A pilot aid which uses an aircraft's position and attitude to transform data from a digital data base to present a pilot with a synthesized three dimensional projected view of the world comprising:
a position determining system for locating sadd aircraft's 23 position in three dimensions;
a digital data base comprising terrain data, said terrain data representing real terrestrial terrain as at least one polygon, said terrain data generated from elevation data of said real terrestrial terrain;
a first attitude determining system for determining said aircraft's orientation in three dimensional space;
a head mounted display wom by said pilot of said aircraft;
a second attitude determining system for determining the 3 . orientation of said pilot's head in three dimensional space; and
a computer to access said terrain data according to said aircraft's position and to transform said terrain data to provide three dimensional projected image data to said 40 head mounted display according to said aircraft's orientation and said pilot head orientation.
24. The pilot aid as described in claim 23 wherein said digital data base further comprises structure data, said structure data representing manmade structures as one or more 4 polygons.
25. The pilot aid as described in claim 23 wherein said elevation data comprises an array of elevation points, whestin each said polygon representing said terrain defines a plane, wherein in a first region of terrain represented by so said at least one polygon each elevation point within each said polygon is within a first distance of said plane of each said polygon.
26. The pilot aid as described in ciaim 25 wherein in a second region of said terrain represented by said at least one ss polygon each elevation point within each said polygon is within a second distance of said plane of each said polygon in said second region, said second distance different from said first distance.
27. The pilot aid as described in claim 26 wherein no 60 elevation point within each said polygon in said first region and said second region is above said plane of said polygon.
28. The pilot aid as described in claim 25 wherein no elevation point within each said polygon in said first region is above said plane of said polygon.
29. A method of using an aiscraft's position and attibude to transform data from a digital data base to present a pilot
with a synthesized three dimensional projected view of the world comprising:
locating said aircraft's position in three dimensions;
providing a data base comprising terrain data, said terrain data representing real terrestrial terrain as at least one polygons, said terrain data generated from elevation data of said real terrestrial serrain;
determining said aircraft's orientation in three dimensional space;
accessing said terrain data according to said aircraft's position;
transforming said terrain data to provide three dimensional projected image data according to said aircraft's orientation; and
displaying said three dimensional projected image data. 30. The method of claim 29 further comprising selecting at least one operating feature, wherein said at least one operating feature comprises at least one feature selected from a group consisting of panning a viewpoint of said three 20 dimensional projected image, tilting a viewpoint of said three dimensional projected image, zooming a viewpoint of said three dimensional projected image, and presenting a three dimensional projected image of a route ahead.
30. The method as described in claim 29 wherein said terrain data base is produced by a method comprising the steps of:
providing a pluraity of elevation points, each of said plurality of elevation points representing an elevation of a point on a terrain;
. defining a polygon having at least one vertex defined by at least one of said elevation points;
examining an adjacent one of said plurality of elevation points to determine if expanding said polygon to an expanded polygon to include said adjacent one of said plurality of elevation points causes at least one of said plurality of elevation points within said expanded polygon not to be within a first distance of a plane of said expanded polygon; and
expanding said polygon to include said adjacent one of said plurality of elevation points if each of said elevation points within said expanded polygon is within said first distance of said plane.
31. The method as described in ciaim 31 wherein at least as one additional adjacent one of said plurality of elevation points is examined, and wherein said polygon is expanded to include said at least one additional one of said plurality of elevation points that does not cause any of said elevation points within said expanded polygon not to be within said first distance of said plane of said expanded polygon.
32. The method as described in claim 32 wherein said polygon is stored in said terrain data base after all of said elevation points adjacent to said polygon have been examined.
33. The method as described in claim 32 wherein additional polygons are defined, expanded, and added to said terrain database.
34. The method as described in claim 31 whercin at lcast one additional adjacent one of said plurality of elevation points is examined, and wherein said polygon is expanded to include said at least one additional one of said plurality of elevation points that does not cause any of said elevation points within said expanded polygon to be above said plane of said expanded polygon and does not cause any of said 55 elevation points within said expanded polygon not to be within said first distance of said plane of said expanded polygon.
35. The method as described in claim 35 wherein said polygon is stored in said terrain data base after all of said elevation points adjacent to sad polygon have been examined.
36. The method as described in claim 31 wherein said adjacent one of said plurality of elevation points is further examined to determine if at least one of said plurality of clevation points within said expanded polygon is above said
plane of said expanded polygon, and said polygon is expanded if none of said elevation points within said expanded polygon is above said plane of said expanded polygon and if each of said elevation points within said expanded polygon is within said first distance of said plane.

${ }^{-7}$

274394

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE FEE RECORD SHEET

$$
08-513,298
$$

ABSTRACT

A pilot aid using synthetic reality consists of a mannerism, adeterminthef the aircraft's position and attitude such as by the global positioning system (GPS), a digital data base containing three-dimensional polygon data for terrain and manmade structures, a computer, and a display. The computer uses the aircraft's position and attitude to look up the terrain and manmade structure data in the data base and by using standard computer graphics methods creates a projected three-dimensional scene on a cockpit display. This presents the pilot with a synthesized view of the world regardless of the actual visibility. A second embodiment uses a head-mounted display with a head position sensor to provide the pilot with a synthesized view of the world that responds to where he or she is looking and which is not blocked by the cockpit or other aircraft structures. A third embodiment allows the pilot to preview the route ahead or to replay previous flights.

Patent Application of
Jed Margolin
0

background of the invention

This invention relates to a pilot aid for synthesizing a view of the world. When flying under Visual plight Rules (VFR) the normal procedure for determining your position is to relate what you see out the window to the information on a paper map. During the day it can be difficult to determine your location because the desired landmark can be lost in the clutter of everything else. When flying at night you see mostly lights. When flying under Instrument Flight Rules (FR) you must relate the information from various navigation aids to the information on a printed map. You must then interpret the map information in order to avoid flying into objects such as mountains and the like. An improvement in this gituation came about when the global positioning system (GPS) became operational and available for civilian use. GPS directly provides map coordinates but you must still, however, interpret the map information. Systems have been developed which use gPs coordinates to access an electronic map which is presented on a display as a flat map. Systems have also been developed that present an apparent three-dimensional effect and some that present a mathematically correct texture-mapped threedimensional projected display.

Both of these sygtems require a very large amount of storage for terrain data. The latter system also requires specialized hardware. Their high cost have prevented their widespread adoption by the aviation community.

The 1984 patent to Taylor et al. (U.S. Patent No. $4,445,118$) shows the basic operation of the global positioning system (GPS).

The 1984 patent to Johnson et al. (U.S. Patent No. 4,468,793) shows a receiver for receiving GPS signals.

The 1984 patent to Maker (U.S. Patent No. 4,485,383) shows another receiver for receiving GPS signals.

The 1986 patent to Evans (U.S. Patent No, 4,599,620) shows a method for determining the orientation of a moving object and producing roll, pitch, and yaw information.

The 1992 patent to Timothy et al. (U.S. Patent No. $5,101,356$) also shows a method for determining the orientation of a moving object and producing. roll, pitch, and yaw information.

The 1993 patent to Ward et al. (U.S. Patent No. $5,185,610$) shows a method for determining the orientation of a moving object from a single GPS receiver and producing roll, pitch, and yaw information.

The 1992 patent to Fraughton et al. (U.S. Patent No. $5,153,836$) shows a navigation, surveillance, emergency location, and collision avoidance. system and method whereby each craft determines its own position using LORAN or GPS and transmits it on a radio channel along with the craft's identification information. Each craft also receives the radio channel and thereby can determine the position and identification of other craft in the vicinity.

The 1992 patent to Beckwith et ai. (U.S. Patent No. 5,140',532) provides a topographical two-dimensional real-time display of the terrain over which the aircraft is passing, and a slope-shading technique incorporated into the system provides to the display an apparent three-dimensional effect similar to that provided by a relief map. This is accomplished by reading compressed terrain data from a cassette tape in a controlled manner based on the instantaneous geographical location of the aircraft as provided by the

Abstract

-3- aircraft navigational computer system, reconstructing the compressed data by suitable processing and writing the reconstructed data into a scene memory with a north-up orientation. A read control circuit then controls the read-out of data from the scene memory with a heading-up orientation to provide a realtime display of the terrain over which the aircraft is passing. A symbol at the center of display position depicts the location of the aircraft with respect to the terrain, permitting the pilot to navigate the aircraft even under conditions of poor visibility. However, the display provided by this system is in the form of a moving map rather than a true perspective display of the terrain as it would appear to the pilot through the window of the aircraft.

The 1987 patent to Beckwith et al. (U.S. Patent No. 4,660,157) is similar to U.S. Patent No. 5,140,532. It also reade compressed terrain data from a cassette tape in a controlled manner based on the instantaneous geographical location of the aircraft as provided by the aircraft navigational computer system and reconstructs the compressed data by suitable processing and writing the reconstructed data into a scene memory. However, instead of providing a topographical two-dimensional display of the terrain over which the aircraft is passing and using a slope-shading technique to provide an apparent three-dimensional effect similar to that provided by a relief map as shown in the $' 532$ patent, the $' 157$ patent processes the data to provide a 3D perspective on the display. There are a number of differences between the ' 157 patent and the present invention: 1. The $\mathbf{~} 157$ patent stores the map as a collection of terrain points with associated altitudes; the large amount of storage required by this approach requires that a tape be prepared for each mission. The present invention stores terrain data as a collection of polygons which results in a significant reduction of data base storage; larger geographic areas can be stored so that it it not necessary to generate

a data base for each misgion.
2. The '157 Patent uses a tape cassette for data base storage; the long access time for tape storage makes it necessary to use a relatively large cache memory. The present invention uses a CD-ROM which permite random access to the data so that the requirements for cache storage are reduced.
3. The ' 157 patent accounts for the aircraft's heading by controliling the way the data is read out from the tape. Different heading angles result in the data being read from a different sequence of addresses. Since addresses exist only at discrete locations, the truncation of address locations oauses an unavoidable change in the map shapes as the aircraft changes heading. The present invention stores terrain as polygons which are mathematically rotated as the aircraft changea attitude. The resolution is determined by number of bits used to represent the vertices of the polygons, not the number of storage addresses.
4. The ' 157 accounte for the roll attitude of the aircraft by mathematically rotating the screen data after it is projected. The ' 157 Patent does not show the display being responsive to the pitch angle of the aircraft. In systems such as this the lack of fidelity is apparent to the user. People know what things are supposed to look like and how they are supposed to change perspective when they move. The present invention uses techniques that have long been used by the computer graphics indugtry to perform the mathematically correct transformation and projection.
5. The i 157 showe only a aingle cockpit display while one of the embodiments of the present invention shows a stereographic head-mounted dieplay with a head sensor. The pilot is presented with a synthesized view of the world that is responsive to wherever, the pilot looks; the view ia not blocked by the cockpit or other aircraft atructures. This embodiment is not anticipated by the ' 157 patent,

Abstract

-5- The 1991 patent to Behensky it al. (U.S: Patent No. $5,005,148$) hows a driving simulator for a video game. The road and other terrain are produced by mathematically transforming a three-dimensional polygon data base.

The first sales brochure from Atari Games Corp. is for a coin-operated game (Hard Drivin') produced in 1989 and relates to the ' 148 patent. The terrain is represented by polygons in a three-dimensional space. Each polygon is transformed mathematically according to the position and orientation of the player. After being tested to determine whether it is visible and having the appropriate illumination function performed, it is clipped and projected onto the display screen. These operations are in general use by the computer graphics industry and are well known to those possessing ordinary skill in the art.

The second sales brochure from Atari Games Corp. is for a coinoperated game (Steel Talons) produced in 1991 and which also relates to the ' 148 patent and the use of polygons to represent terrain and other objects.

The 1993 patent to Dawson et al. (U.S. Patent No. 5,179,638) ahows a a method and apparatus for providing a texture mapped perspective view for digital map systems which includes a geometry engine that receives the elevation posts scanned from the cache memory by the shape address generator. A tiling engine is then used to transform the elevation posts into threedimensional polygons. There are a number of differences between the '638 patent and the present invention:

> 1. The ' 638 patent is for a digital map system only. The matter of how the location and attitude are selected is not addressed. The present invention uses a digital map as part of a stem for presenting an aircraft pilot with a synthesized view of the world regardless of the actual visibility. > 2. The ' 638 patent stores the map as a collection of terrain points with associated altitudes, thereby requiring a large amount of data storage.

The terrain point: are transiormed into polygons during program runtime, thereby adding to the processing burden. The present invention stores terrain data as a collection of polygons which results in a significant reduction of data base storage.
3. The present invention also teaches the use of a gtereographic headmounted display with a head sensor. The pilot is presented with a synthesized view of the world that is, responsive to wherever the pilot looks; the view $1 s$ not blocked by the cockpit or other aircraft etructures. This. embodiment is not anticipated by the ' 638 patent.

The 1994 patent to Hamilton et al. (U.8. Patent No. 5,296,854) shows a helicoptex virtual display system in which the etructual outilnes correaponding to structual members forming the canopy structure are added to the head-up dieplay in order to replace the canopy etructure clues used by pllote which would otherwise be lost by. the use of the head-up display.

The 1994 patent to Lewins (U.S. Patent No. $5,302,964$) ghows a head-up dieplay for an airczaft and incorporatas a cathode-ray tube image generator with a digital lookwup table for distortion correction. An optical gystem projects an image formed on the CRT screen onto a holographic mirror combiner which is trangparent to the pilot'a direct view through the aircraft windshield.

The sales brochure from the Polhemus company shows the commercial avadlability of a position and orientation sensor which can be used on a head-mounted dieplay.

The article from EDN magazine, January 7, 1993, pagea 31-42, entitled "Syatem revolutionizes aurveying and navigation" is an overview of how the global positioning aystem (GPS) works and lists several manufacturera of commercially available receivers. The article also mentions aeveral applications such as the use by geologiets to monitor figult linea, by oil
companies for offshore oil explorations, for keeping track of lower-orbit satellites, by fleet vehicle operators to keep track of their fleet, for crop sprayers to spread fertilizer and pesticides more efficiently, and for in-car systems to display maps for automotive navigation.

The action from "Aviator's Guide to GPS" presents a history of the GPS program.

The sales brochure from Megellan Systems Corp. is for commercially available equipment comprising a GPS receiver with a'moving map display. The map that is displayed is a flat map.

The sales brochure from Trimble Navigation is for a commercially available GPS receiver.

The ales brochure from the U.S. Geological service showa the availability of Digital Elevation Models for all of the United States and its territories.

The second sales brochure from the U.S. Geological ferwiee shows the availability of Digital Line Graph Models for all of the United States and its territories. The data includes: political and administrative boundaries; hydrography consisting of all flowing water, standing water, and wetlands; major transportation systems consisting of roads and trails, railroads, pipelines, transmission lines, and airports; and significant manmade structures.

The Washington Sectional Aeronautical Chart is a paper map published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration that shows the complexity of the information that an aircraft pilot needs in order to fly in the area covered by the map. The other areas of the U.S. are covered by similar maps.

The sales brochure from Jeppesen Sanderson shows that the company makes it navigation data base available in computer readable form.

Accordingly, several objectis and advantages of my invention are to provide a system that produces a mathematically correct three-dimensional profected view of the terrain while reducing the amount of atorage required for the data base and which can be accomplished by using standard comnercialiy available components. The invention can be used as a real-time inflight aid or it can be used to preview a flight, or it can be used to replay and review a previous flight.

Further objects and advantages of my invention will become apparant from a consideration of the drawings and ensuing description.

Abstract

\section*{GUMDARY OF THE INVENTION}

The present invention is a pilot aid which uses the aircraft's position and attitude to transform data from a digital data base to present a The three-dimeneional position is typically determined by using the output of a commercially available GPS receiver. As a safety check, the altitude calculated by the GPS recelver can be compared to the output of either a standard altimeter or a radio altimeter. Attitude can also be determined from the use of a GPS recelver or it can be derived from standard avionic instruments such as turn-and-bank indicator and gyrocompass. The digital data base represents the terrain and manmade structures as collections of polygons in order to minimize storage requirements. The pilot can select several feature such as pan, tilt, and zoom which would allow the pilot to see a synthesized view of terrain that would otherwise be blocked by the aircraft's structure, especially on a low-wing aircraft. The pilot can also preview the route either inflight or on the ground. Because the syatem has the ability to save the flying parameters from a flight, the pilot can replay all or part of a previous flight, and can even take over during the replay to try out different filght strategies. Through the use of a head-mounted diaplay with a head sensor, the pilot can have complete range of motion to receive a synthesized view of the world, completely unhindered by the aircraft structure.

DESCRIPTION OF THE DRAWINGS

FIG. I is a block diagram ahowing the output to a aingle video diaplay.

FIG. 2 is a block diagram showing the output to a head-mounted display.

FIG. 3 is a block diagram showing a system used to plan and/or replay a particular flight.

FIG. 4 Le block diagram showing Computer 107 and Graphics System 108 in FIG. 1 , FIG. 2, and FIG. 3.

FIG. 5a shows a simple positive (counter-clockwise) rotation of a point around the origin of a 2-Dimensional space.

FIG. 5b shows a second positive (counter-clockwise) rotation of a point around the origin of a 2-Dimensional mpace.

FIG. 6a shows the equivalent three dimensional gpace of FIG. 5a where the rotation is around the z axis.

FIG. 6b is a re-orientation of the axes of FIG. 6a showing rotation around the Y axis.

FIG. 6c is a re-orientation of the axes of FIG. 6a showing rotation around the X axis.

FIG, 7 a is a side view showing the projection of a point in threedimensions projected onto a two-dimensional acreen.

FIG. 7b is a top view showing the projection of a point in threedimensions projected onto a two-dimensional screen.

FIG. 8a is a cabinet-projected three-dimensional representation of the viewing pyramid.

FIG. 8b is a 2D top view of the viewing pyramid.
FIG. 8c is a 2 D side view of the viewing pyramid.
FIG. 9a shows an unclipped polygon.
FIG. 9b shows how clipping the polygon in FIG. 9a produces additional sides to the polygon.

FIG. 10a shows the impending crossover from Geographic Data Block 21 to Geographic Data Block 22.

FIG. 10b ghows the result of a crossover from Geographic Data Block 21 to Geographic Data Block 22.

FIG. 11a shows the impending crossover from Geographic Data Block
 22 to Geographic Data Block 32.

FIG. 11b shows the result of a crossover from Geographic Data Block 22 to Geographic Data Block 32.

FIG. 12a through FIG. 12d, and FIG. $13 a$ through FIG. 136 show the procedure for generating the polygon data base from the Digital Elevation Model data.

DETAILED 8PECIPICATION

FIG. 1 shows the basic form of the invention. GPS Receiver 101 receives signals from the satellites that make up the global positioning system (GPS) and calculates the aircraft's position in three dimensions. Altimeter 104 provides an output of the aircraft's altitude' as a safety check in the event GPS Receiver 101 malfunctions. Turn-and-bank Indicator 102 and Gyrocompass 103 provide the aircraft's attitude which comprises heading, roll, and pitch. CD-ROM Data Base 105 contains the digital data base consisting of three-dimensional polygon data for terrain and manmade structures

Computer 107 is shown in more detail in FIG. 4 and uses commercially available integrated circuits including processor 404, the MPC601, from Motorola Semiconductor Inc. The MPC601 is a fast 32-bit RISC processor with a floating point unit and a 32K Byte eight-way set-associative unified instruction and data cache. Most integer instructions are executed in one clock cycle. Compilers are available for ANSI standard C and for ANSI standard FORTRAN 77. Computer 107 also contains ROM 405, RAM 406, Avionics Interface 401, CD-ROM Interface 402, Control Panel Interface 403, Graphics Systems Interface 407, and Hard Drive Interface 408.

Computer 107 uses the aircraft's position from GPS Receiver 101 to look up the terrain and manmade structure data in CD-ROM Data Base 105. This data is organized in geographic blocks and 18 accessed so that there is always the proper data present. This is shown in FIG. 10a. FIG. lOb shows that when the aircraft crosses from Block 21 to Block 22, the data from Blocks 10, 20, and 30 are discarded and data from Blocks 13, 23, and 33 are brought in from CD-ROM Data Base 105. FIG. Ila and FIG. lib show the aircraft crossing from Block 22 to Block 32.

Abstract

-13- Computer 107 uses the aircraft's position from GPS Receiver 101 and attitude information from Turn-and-bank Indicator 102 and Gyrocompass 103 to mathematically operate on the terrain and manmade structure data to present three-dimensional projected polygons to Graphics System 108. As shown in FIG. 4, Graphics System 108 consists of a commercially available graphics Integrated circuit 409, the 86c805, made by 53 Incorporated. This integrated circuit contains primitives for drawing lines in addition to the standard SVGA graphics functions. The 86C805 controls DRAM 410 which is the video memory consisting of two buffers of 1024×768 pixels, each of which is 8 bits deep. The video to be displayed from DRAM 410 is sent to RAMDAC 411 which is an integrated circuit commercially available from several manufacturers, such as Brooktree and AT\&T. RAMDAC 411 contains a small RAM of 256×24 bits and three 8-bit DACE. The RAM section is a color table programmed to assign the desired color to each of the 256 combinations possible by having 8 bits/pixel and is combined with three video vACs, one for each color for Video Display 109.

Video Display 109 is a color video display of conventional design such as a standard CRT, an LCD panel, or a plasma display panel. The preferred size of Video Display 109 is 19 " although other sizes may be used.

FIG. 2 shows the use of the system with Head Mounted Display 201 . Head Mounted Display Attitude Sensors 202 provide Computer 107 with the orientation of Head Mounted Display 201. This orientation 18 concatenated with the aircraft's orientation provided by Turn-and-bank Indicator 102 and Gyrocompass 103. As a consequence the pilot can turn his or her head and view the threedimensional synthesized view of the transformed terrain and manmade structure data unhindered by the aircraft's structure. With the appropriate sensors for engines, fuel tanks, doors, and the like, the pilot can be presented with synthesized representations of these objects in their correct locations. For example, the pilot would be able to 'look' at a fuel-tank and 'see' if it is running low. The pilot would also be able to 'see' if there is a problem

with an engine and, on multi-engine aircraft, identify which one. By using a technique similar to that taught in the 1992 patent to Fraughton et al. (U.S. Patent No. $5,153,836$) where each aircraft determines its own position using LORAN or 'GPS and transmits it on a radio channel along with the aircraft's Identification information so that each craft also receives the radio channel and can thereby determine the position and identification of other craft in the vicinity, these other aircraft can be presented in the present invention as three-dimensional objects in their correct positions to alert the pilot to their presence and take evasive maneuvers as required.

Hard Disk Drive 110 is for recording the aircraft's position and orientation data for later playback in order to review the flight. Because the information presented on Video Display 109 is a function of the aircraft's position and orientation data applied to the CD-ROM Data Base 105; it can be reconstructed later at any time by storing just the aircraft's position and orientation data and applying it again to CD-ROM Data Base 106, as long as the data base is still available. The aircraft's position and orientation data requires fewer than 100 bytes. By recording it every 0.1 seconds, an hour requires about 3.6 Megabytes of storage. (100 bytes/update x 10 updates/eecond x 60 seconds $/ \min \times 60$ minutes/hour $=$ about 3.6 Megabytes) Therefore, a standard 340 Megabyte hard drive would store about 94 hours of operation.

A method for previewing a route that has not been flown before is shown in FIG. 3 . GPS Receiver 101, Turn-and-bank Indicator 102; Gyrocompass 103, and Altimeter 104 are replaced by User Flight Controls with Force Feedback 301 and Aerodynamic Model Processor 302. Aerodynamic Model Processor 302 is a processor that implements the aerodynamic mathematical model for the type of aircraft desired. It receives the user Inputs from User Flight Control with Force Feedback 301, performs the mathematical calculations to simulate the desired aircraft, and supplies output back to the Force Feedback part of

the controls and to Computer 107. The outpitis supplied to Computer 107 simulate the outputs normally aupplied to GPS Receiver 101, Turn-and-bank Indicator 102, Gyrocompass 103, and Altimeter 104. In this way, Computer 107 executes exactly the same program that it would perform in the in-flight system. This permite the pilot to practice flying routes that he or she has not flown before and is particularly useful in practicing approach and landing at unfamiliar airports. This eystem does not need to be installed in an aircraft; it can be installed in any convenient location, even the pilot'в home.

Control panel 10406 allows the pilot to select different operating features. For example, the pilot can choose the 'look angle' of the display (pan and tilt). This would allow the pilot to see synthesized terrain coresponding to real terrain that would otherwise be blocked by the aircraft's structure like the nose, or the wing on a low wing aircraft. Another feature is the zoom function which provides magnification. Another feature is to permit the pilot to select a section of the route other than the one he or she is on, for example, to preview the approach to the destination airport.

MATH INTRO

The math for the present invention has been used in the field of coinoperated video games and in traditional computer graphica. However, since it has not been well documented, it will be presented here. The basic concept
 a ahort step from that to the present invention where the inputs represent the physical location and attitude of the aircraft.

The eteps required to view a 3D polygon-based data base ares

1. Transformation (translation and rotation as required)
2. Visibllity and illumination
3. Clipping
4. Projection

In this geometric model there is an absolute Universe filled with Objects, each of which is frea to rotate and translate. Associated with each Object is an Orthonormal Matrix (i.e. a set of orthogonal Unit Vectors) that decribee the Object's orientation with respect to the Univarse. Because the Unit Vectors are Orthogonal, the Inverse of the matrix is simply the Transpose. This makes it very easy to change the point of reference. The Object may look at the Universe or the Universe may look at the Object. The Object may look at another object after the appropriate concatenation of Unit Vectors. Each Object will always Roll, Pitch, or Yaw around its own axes regardless of its current orientation without using Euler angle functions.

ROTATIONS

The convention used here is that the z axis is straight up, the x axis is straight ahead, and the Y axis is to the right. ROLL is a rotation around the X axis, PITCH is a rotation around the Y axis, and YAW is a rotation around the z axis.

For a simple positive (counter-clockwise) rotation of a point around the origin of a 2-Dimensional space:
$X^{\prime}=X * \cos (a)-Y * \operatorname{SIN}(a)$
$Y^{\prime}=X * \operatorname{SIN}(a)+Y * \cos (a)$
See FIG. Sa.
If we want to rotate the point again there are two choices:

1. Simply mum the angles and rotate the original points, in which cage:
$X^{\prime \prime}=X^{*} \cos (a+b)-Y * \operatorname{SIN}(a+b)$
$Y^{\prime \prime}=X^{*} S I N(a+b)+Y * \operatorname{COS}(a+b)$
2. Rotate X^{\prime}, Y^{\prime} by angle b:
$X^{\prime \prime}=X^{\prime} * \cos (b)-Y^{\prime *} \sin (b)$
$Y^{\prime \prime}=X^{\prime} \neq \operatorname{SIN}(b)+Y^{\prime *} \operatorname{COS}(b)$
See FIG. Sb.
With the second method the errors are cumulative. The first method preserves the accuracy of the original coordinates; unfortunately it works only for rotations around a single axis. When a series of rotations are done together around two or three axes, the order of rotation makes a difference. As an example: An airplane always Rolls, Pitches, and Yaws according to its own axes. Visualize an airplane suspended, in air, wings straight and level, nose pointed North. Roll 90 degrees clockwise, then pitch 90 degrees "up". The nose will be pointing East. Now we will start over and reverse the order of rotation. Start from straight and level, pointing North. Pitch up 90 degrees, then Roll 90 degrees clockwise, The nose will now be pointing straight up, where "up" in referenced to the ground. If you have trouble visualizing these motions, just pretend your hand ia the airplane.

This mans that we cannot simply keep a running sum of the angles for each axis. The standard method is to use functions of Euler angles. The method to be described is easier and faster to use than Buler.angle functions.

Although FIG. Ea represents a two dimensional space, it is equivalent to a three dimensional apace where the rotation is around the z maxis. See FIG. Wa. The equations are :

$Y^{\prime}=Y * \operatorname{Cos}(x a)-2 * \operatorname{SIN}(x a) \quad$ Equation 3
$Z^{\prime}=Y * \operatorname{SIN}(x a)+Z * \operatorname{COS}(x a)$
See FIG. Wc.
From the ship's frame of reference it is at rest; it is the Universe that is rotating. We can either change the equations to make the angles negative or decide that positive rotations are clockwise. Therefore, from now on all positive rotations are clockwise.

Consolidating Equations 1, 2, and 3 for a motion consisting of rotations wa (around the $z a x i b$), ya (around the y axis), and $x a$ (around the X axis) yields:
$x^{\prime}=\quad x^{*}[\cos (y a) * \cos (z a)]$
Y*[-COS(ya)*SIN(2a)]
Z*[SIN(ya)]
$Y^{\prime}=\quad X^{*}[\operatorname{SIN}(x a) * \operatorname{SIN}(y a) * \operatorname{Cos}(z a)+\cos (x a) * 8 I N(z a)]$
Y*[-SIN(xa)*SIN(ya)*SIN(za) + $\cos (x a) * \cos (z a)]+$
Z* $[-\sin (x a) * \cos (y a)]$
$z^{\prime}=\quad X *[-\operatorname{COS}(x a) * \operatorname{SIN}(y a) * \cos (z a)+\operatorname{sIN}(x a) * \operatorname{SIN}(z a)]+$
$Y^{*}[\operatorname{COS}(x a) * \operatorname{SIN}(y a) * \operatorname{SIN}(z a)+\operatorname{SIN}(x a) * \operatorname{Cos}(z a)]+$
$2 *[\cos (x a) * \cos (y a)]$
(The asymmetry in the equations is another indication of the difference the order of rotation makes.)

The main use of the consolidated equations is to show that any rotation will be in the form:

```
    X' = Ax * X + Bx * Y + Cx * Z
    \mp@subsup{Y}{}{\prime}}=Ay * X + By*Y + Cy * Z
Z'=Az*X + Bz* Y + Cz * Z
```

If we etart with three specific points in the initial, absolute coordinate
system, such $\cdot \mathrm{aE}$:
$P x=(1,0,0)$
Py $=(0,1,0)$
$P z=(0,0,1)$
after any number of arbitrary rotations,

$$
\begin{aligned}
& P X^{\prime}=(X A, Y A, Z A) \\
& P Y^{\prime}=(X B, Y B, Z B) \\
& P Z^{\prime}=(X C, Y C, Z C)
\end{aligned}
$$

By inspection:

$X A=A x$		
$Y A=A y$	$X B=B x$	$Y C=C x$
$Z A=A z$	$Y B=B y$	$Y C=C y$
	$Z B=B z$	$Z C=C z$

Px, Py, and Pz can be thought of as the axes of a gyrocompass or 3-axis stabilized platform in the ship that is always oriented in the original, absolute coordinate system.

TRANSLATIONS

Translations do not affect any of the angles and therefore do not affect the rotation coefficients. Translations will be handled as follows:

Rather than keep track of where the origin of the absolute coordinate system is from the ship'a point of view (it changes with the ship's orientation), the ship's location will be kept track of in the absolute coordinate system.

To do this requires finding the inverse transformation of the rotation matrix. Px, Dy, and Dz are vectors, each with a length of 1.000 , and each one orthogonal to the others. (Rotating them will not change these properties.) The inverse of an orthonormal matrix (one composed of orthogonal unit vectors like Px, Fy, and PI) is formed by transposing rows and columns.

Therefore, for X, Y, Z in the Universe's reference and $X^{\prime}, Y^{\prime}, Z^{\prime}$ in the ship's reference:

$\left[\begin{array}{l}X^{\prime} \\ y^{\prime} \\ Z^{\prime}\end{array}\right]=\left[\begin{array}{lll}A x & B x & C x \\ A y & B y & C y \\ A z & B z & C z\end{array}\right] *\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad$ and

The ship's X unit vector $(1,0,0)$, the vector which, according to the ship is straight ahead, transforms to ($A x, B x, C x)$. Thus the position of the ship in terms of the Universe' B coordinates can be determined.

The complete transformation for the ship to look at the Universe, taking into account the position of the Ship:

For X, Y, Z in Universe reference and $X^{\prime}, Y^{\prime}, Z^{\prime}$ in Ship's reference

INDEPENDENT OBJECTS

To draw objects in a polygon-based system, rotating the vertices that define the polygon will rotate the polygon.

The object will be defined in its own coordinate system (the object "library") and have associated with it a set of unit vectors. The object is rotated by rotating its unit vectors. The object will also have a position in the absolute Universe.

When we want to look at an object from any frame of reference we will transform each point in the object's library by applying a rotation matrix to place the object in the proper orientation. We will then apply a translation vector to place the object in the proper position. The rotation matrix ia derived from both the object's and the observer's unit vectors; the translation vector is derived from the object's position, the observer's position, and the observer's unit vectors.

The simplest frame of reference from which to view an object is in the Universe's reference at $(0,0,0)$ looking along the X axis. The reason is that we already have the rotation coefficients to look at the object. The object's unit vectors supply the matrix coefficients for the object to look at (rotate) the Universe. The inverse of this matrix will allow the Universe to look at (rotate) the object. As discussed previously, the unit vectors form an Orthonormal matrix; its inverse is simply the Transpose. After the object is rotated, it is translated to its position (its position according to the Universe) and projected. More on projection later.

A consequence of using the Unit Vector method is that, whatever orientation the object is in, it will always Roll, Pitch, and Yaw according to ITS axes.

For an object with unit vectors:

and absolute position $[X T, Y T, Z T]$, and $[X, Y, Z]$ a point from the object'a library, and $\left[X^{\prime}, Y^{\prime}, Z^{\prime}\right]$ in the Universe's reference,

The Universe looks at the object;

$T 023 \mathrm{X} \quad\left[\begin{array}{l}X^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{lll}A x & A y & A z \\ B x & B y & B z \\ C x & C y & C z\end{array}\right] *\left[\begin{array}{l}x \\ y \\ z\end{array}\right]+\left[\begin{array}{l}X T \\ Y T \\ z T\end{array}\right]$

For two ships, each with unit vectors and positions:

Ship 1 looks at the Universe looking at Ship 2 :

Expand:

Using the Distributive Law of Matrices:
$\underbrace{(0241 x}$ $=\left[\begin{array}{lll}\text { Ax1 } & \text { Bx1 } & \text { CxI } \\ \text { Ay1 } & \text { By1 } & \text { Cy1 } \\ \text { Az1 } & \text { Bz1 } & \text { Cz1 }\end{array}\right] *\left(\left[\begin{array}{lll}\text { Ax2 } & \text { Ay2 } & \text { Az2 } \\ \text { Bx2 } & \text { By2 } & \text { Bz2 } \\ \text { Cx2 } & \text { Cy2 } & \text { Cz2 }\end{array}\right] *\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)+\left[\begin{array}{lll}\text { Ax1 } & \text { Bx1 } & \text { Cx1 } \\ \text { Ay1 } & \text { By1 } & \text { Cy1 } \\ \text { Az1 } & B z 1 & C z 1\end{array}\right] *\left[\begin{array}{l}\text { XT2 } \\ Y T 2 \\ \mathrm{ZT2}\end{array}\right]$

Using the Associative Law of Matrices:
$70242 x$

$$
=\left(\left[\begin{array}{lll}
\text { Ax1 } & \text { Bx1 } & \text { Cx1 } \\
\text { Ay1 } & \text { By1 } & \text { Cy1 } \\
\text { Az1 } & \text { Bz1 } & \text { Cz1 }
\end{array}\right] *\left[\begin{array}{lll}
A x 2 & \text { Ay2 } & \text { Az2 } \\
\text { Bx2 } & \text { By2 } & \text { Bz2 } \\
C x 2 & C y 2 & C z 2
\end{array}\right]\right\} *\left[\begin{array}{l}
X \\
y \\
z
\end{array}\right]+\left[\begin{array}{lll}
A x 1 & B x 1 & C x 1 \\
A y 1 & B y 1 & C y 1 \\
A z 1 & B z 1 & C z 1
\end{array}\right] *\left[\begin{array}{l}
X T 2 \\
Y T 2 \\
Z T 2
\end{array}\right]
$$

Substituting back into Equation 10 gives:

$604.3 \times$
$-\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y 1 & C y 1 \\ A z 1 & B z 1 & C z 1\end{array}\right] *\left[\begin{array}{l}X T 1 \\ Y T 1 \\ z T 1\end{array}\right]$

-

Therefore:

πx^{i-4}

\cdot
EQUATION 12
$\xrightarrow{10245 X}$
This matrix represente the orientation of ship 2 according to Ship 1's frame of reference. Thls concatentation needs to be done only once per update of ship 2.
\qquad Also let:
10250
$\left[\begin{array}{l}X T \\ -Y T \\ z T\end{array}\right]=\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y 1 & C y 1 \\ A z 1 & B z 1 & C z 1\end{array}\right] *\left[\begin{array}{l}X T 2-X T 1 \\ Y T 2-\dot{Y} T 1 \\ Z T 2-Z T 1\end{array}\right]$
EQUATION 13
(XT,YT,ZT) is merely the position of Ship 2 in ship i's frame of reference.

This also needs to be done only once per update of ship 2. Therefore
\qquad the transformation to be applied to ship 2 's library will be of the form:

Fossil

EQUATION 14

Therefore, every object has six degrees of freedom, and any object may look at any other object.

102504
SUMMARY OF TRANSFORMATION ALGORITHMS:

```
Define Unit Vectors: [Px] = (Ax,Ay,Az)
    [Py] = (Bx,By,Bz)
    [Pz]=(Cx,Cy,Cz)
    Initialize: Ax=By=Cz=1.000
                Ay=Az=Bx=Bz=Cx=Cy=0
    If Roll:
        Ay' ='Ay*COS (xa) - Az*SIN(xa)
        Az* = Ay*SIN(xa) + Az*COS(xa)
        By'=By*COS(xa) - Bz*SIN(xa)
        Bz' = By*SIN(xa) + Bz*COS(xa)
        Cy'=Cy*Cos(xa) - Cz*SIN(xa)
        Cz'=Cy*SIN(xa) + Cz*COS(xa)
```

 If Pitch:
    ```
Az'=Az*COS(ya) - Ax*SIN(ya)
Ax' = Az*SIN(ya) + Ax*COS(ya)
Bz' = Bz*COS(ya) - Bx*SIN(ya)
Bx' = Bz*SIN(ya) + Bx*SIN(ya)
Cz'=Cz*Cos(ya) - Cx*SIN(ya)
Cx' = Cz*SIN(ya) + Cx*COS(ya)
```


If Yaw:

$A x^{\prime}=A x * \operatorname{Cos}(2 a)-A y^{*} \operatorname{SIN}(z a)$

$B x^{\prime}=B x * \operatorname{COS}(z a)-B y * S I N(z a)$ $B y^{\prime}=B x * \operatorname{SIN}(z a)+B y * C O S(2 a)$
$C x^{\prime}=C x * \cos (z a)-C y^{* S I N}(z a)$
Cl' = Cx*SIN(za) + Cy*COS(za)
('va', 'ya', and 'ra' are' incremental rotations.)
The resultant unit vectors form a transformation matrix. For X, Y, z in
\qquad Universe reference and $X^{\prime}, Y^{\prime}, Z^{\prime}$ in Ship's reference
$\left[\begin{array}{l}X^{\prime} \\ y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{lll}A x & B x & C x \\ A y & B y & C y \\ A z & B z & C z\end{array}\right] *\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
and

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{lll}
A x & A y & A z \\
B x & B y & B z \\
C x & C y & C z
\end{array}\right] *\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]
$$

The ship's x unit vector, the vector which according to the ship is straight ahead, transforms to ($A x, B x, C x$): For a ship in free space, this is the acceleration vector when there is forward thrust. The sum of the accelerations determine the velocity vector and the sum of the velocity vectors determine the position vector (XT ,YT, ZT),
For two ships, each with unit vectors and positions:
\qquad

| $\left[\begin{array}{lll}\text { Axil } & \text { Bx1 } & \text { CPI } \\ \text { Aye } & \text { By } & \text { Cyl } \\ \text { Az } & \text { BzI } & \text { CzI }\end{array}\right]$ | ship 1 Unit vectors |
| :--- | :--- |
| (XT1,YT1, 2T1) | Ship 1 Position |

\qquad Ship 1 looks at the Universe:

(X, Y, Z) in Universe ($X^{\prime}, Y^{\prime}, Z^{\prime}$) in Ship 1 frame of reference

Ship 1 looks at ship 2:
$\left[\begin{array}{lll}A x & B x & C x \\ A y & B y & C y \\ A z & B z & C z\end{array}\right] *\left[\begin{array}{lll}A x 1 & B x 1 & C x 1 \\ A y 1 & B y 1 & C y 1 \\ A z 1 & B z 1 & C z 1\end{array}\right] *\left[\begin{array}{lll}A x 2 & A y 2 & A z z \\ B x 2 & B y 2 & C y 2 \\ C x 2 & C y 2 & C z 2\end{array}\right]$
(Ship 2 orientation relative to ship 1 orientation)
roily $\left[\begin{array}{l}X T \\ Y T \\ Z T\end{array}\right]=\left[\begin{array}{lll}\mathrm{Ax1} & \mathrm{Bx1} & \mathrm{CX1} \\ \mathrm{Ay1} & \mathrm{By1} & \mathrm{CY1} \\ \mathrm{Az1} & \mathrm{Bz1} & \mathrm{Cz1}\end{array}\right] *\left[\begin{array}{l}\mathrm{XT2-XT1} \\ \mathrm{YT2} \mathrm{YT} \\ \mathrm{ZT} 2-\mathrm{ZT} 1\end{array}\right]$
(Ship 2 position in Ship 1's frame of reference)
$\left[\begin{array}{l}X^{\prime} \\ Y^{\prime} \\ z^{\prime}\end{array}\right]=\left[\begin{array}{lll}A x & B x & C x \\ A y & B y & C y \\ A z & B z & C z\end{array}\right] *\left[\begin{array}{l}X \\ y \\ z\end{array}\right]+\left[\begin{array}{l}X T \\ Y T \\ z T\end{array}\right]$
(X, Y, Z) in ship 2 library
($X^{\prime}, Y^{\prime}, Z^{\prime}$) in Ship 1 reference

VISIBILITY AND ILLUMINATION

After a polygon is transformed, whether it is a terrain polygon or it belongs to an independently moving object such as another aircraft, the next step is to determine its illumination value, if indeed, it is visible at all.

Associated with each polygon is a vector of length 1 that is normal to the surface of the polygon. This is obtained by using the vector crossproduct between the vectors forming any two adjacent aides of the polygon. For two vectors V1 $=[x 1, y 1, z 1]$ and $V 2=\left\{x 2, y^{2}, 22\right]$ the crossproduct $V 1 X$ V2 is the vector [(yl*z2-y2*z1),-(x1*z2-x2*z1), (x1*y2-x2*y1)]. The vector is then normalized by dividing it by ital length. This gives it a length of 1 . This
calculation can be done when the data base is generated, becoming part of the data base, or it can be done during program run time. The tradeoff is between data base size and program execution time. In any event, it becomes part of the transformed data.

After the polygon and its normal are transformed to the aircraft's frame of reference, we need to calculate the angle between the polygon's normal and the vector from the base of the normal to the aircraft. This is done by taking the vector dot product. For two vectors $V 1=[x 1, y 1,21]$ and $\mathrm{V} 2=\left[x_{2}, \mathrm{Y}_{2}, \mathrm{z2}\right\}, \mathrm{V} 1$ dot $\mathrm{V} 2=$ length $(\mathrm{V} 1) *$ length (V2) * cos (a) and is calculated as (xi*x2 + yl*y2 + zl*z2). Therefore:

$$
\cos (a)=(x 1 * x 2+y 1 * y 2+z 1 * z 2)
$$

length (V1) * length (V2)

A cosine that is negative means that the angle is between 90 degress and 270 degrees. Since this angle is facing away from the observer it will not be visible and can be rejected and not subjected to further processing. The actual cosine value can be used to determine the brightness of the polygon for added realism.

CLIPPING

Now that the polygon has been transformed and checked for visibility it must be clipped so that it will properly fit on the screen after it is projected. Standard clipping routines are well known in the computer graphics industry. There are mix clipping planes as shown in the 3D representation shown in FIG. Ba. The 2 D top view is shown in FIG. 8 b , and the 2 D gide view is shown in FIG. Bc. It should be noted that clipping a polygon may result in the creation of addition polygon sides which must be added to the polygon description sent to the polygon display routine.

As shown in FIG. $7 a, X^{\prime}$ is the diatance to the point along the X axis, Z is the height of the point, X is is the distance from the eyepoint to the screen onto which the point is to be projected, and Sy is the vertical displacement on the screen. z^{\prime} / X^{\prime} and Sy/Xs form aimilar triangles so: $z^{\prime} / X^{\prime}=S y / X s$,
 Sx is the horizontal displacement on the screen. However, we still need to fit Sy and sx to the monitor display coordinates. Suppose we have a screen that is 1024 by 1024. Each axis would be plus or minus 512 with $(0,0)$ in the center. If we want a 90 degree field of view (plus or minus 45 degrees from the center), then when a point has $Z \prime / X^{\prime}=1$ it must be put at the edge of the screen where ita value is 512. Therefore sy $=512$ Th $^{\prime} / \mathrm{X}$ '. (Sy is the Screen \mathbf{Y}-coordinate).

Therefore:

| $S y=K * Z \prime / X^{\prime}$ | $S y$ is the vertical coordinate on the display |
| :--- | :--- |
| $S x=K * Y^{\prime} / X^{\prime}$ | $S x$ is the horizontal coordinate on the display |

K is chosen to make the viewing angle fit the monitor coordinates. If K is varied dynamically we end up with a zoom lens effect. And if we are clever in implementing, the divider, K can be performed without having to actually do a multiplication.

THE DATABASE

Sumer The data base is generated from several sources. The U.S. Geological service (USGS) makes available various databases, two of which are of particular interest. The first is the Digital Elevation Model data which consist of an array of regularly spaced terrain elevations. This data base is converted into a data base containing polygons (whose vertices are threedimensional points) in order to maximize the geographic area covered by CD-ROM Data Base 105 and also to reduce the amount of runtime processing required of Computer 107. This is possible because there are large areas of terrain that are essentially flat. Note that flat does not necessarily mean level. A sloping area is flat without being level.

The Digital Elevation Model data elevations are spaced 30 meters apart. 30 meters $=30 \mathrm{~m} \times 39.37 \mathrm{in} / \mathrm{m} \times 1 \mathrm{ft} / 12 \mathrm{in}=98.245 \mathrm{ft}$. A linear mile contains $5,280 \mathrm{ft} / \mathrm{mi} \times 1$ data point /98.245 ft $=53.65$ data points $/ \mathrm{mi}$. Therefore, a square mile contains $53.65 \times 53.65=2878$ data points. California has a total area of 158,706 square miles which requires $158,706 \times 2878=456,755,868$ data points. Since this figure includes $2,407 \mathrm{gq} \mathrm{mi}$ of inland water areas, there are $2407 \times 2878=6,927,346$ data points just for inland water. The U.S. has a total area of $3,618,773$ square miles which requires $3,618,773 \times 2878=10,414,828,694$ data points. This figure includes $79,484 \mathrm{sq} \mathrm{mi}$ of inland water areas requiring $79,484 \times 2878$ = 228,754,952 data points just for inland water.

The polygon data are organized in geographic data blocks: Because the amount of data in each geographic data block depends on the number of polygons and because the number of polygons depends on the flatness of the terrain, the size of each geographic data block is variable. Therefore, an address table is maintained that contains a pointer to each geographic data block. The first choice is to decide on the geographic area represented -by the block. For the present invention the size is $20 \mathrm{mi} \times 20 \mathrm{mi}=400 \mathrm{sq} \mathrm{mi}$. Therefore, the
polygon data base for California requires $158,706 \mathrm{sq} \mathrm{mi} \times 1$ block/ $400 \mathrm{sq} \mathrm{mi}=$ 397 geographic data blocks. The number of polygons in a given geographic data block depends on the flatness of the terrain and what we decide is 'flat'. The definition of 'flatness' is that for a polygon whose vertices are threedimensional points, there will be no elevation points that are higher than the plane of the polygon and there will be no elevation points that are below the the plane of the polygon by a diatance called the Error Factor. A small Error Factor will require more polygons to represent a given terrain than will a large Error Factor. A small Error Factor will also generate the terrain more accurately. The Error Factor does not have to be the same for all Geographic Data Blocks. Blocks for areas of high interest, ilike airports and surrounding areas can be generated using a gmall Error Factor in order to represent the terrain more precisely. The present invention uses an Error Factor of 10 ft for areas gurrounding airports and 50 ft for all other areas.

A procedure for generating the polygon dita base from the Digital Elevation Model data ia demonstrated in FIG. 12a through FIG. $12 \frac{f}{9}$ and FIG. $13 a$ through FIG. $13{\underset{A}{f}}_{f}^{f}$. We start with three pointe which define a polygon and which has a surface. We select the next elevation point and decide if it belonge in the polygon accordinng to the citeria previously discusaed. If it does, it gets added to the polygon. If not, not. We then test additional adjacent points until we run out. Then we start over with another three points.

When we are done generating polygons for a Geographic Data. Block we go back and examine them; any polygon that is 'too big' is broken down into smaller polygons. This is to make gure there are always enough polygons on the ecreen to provide a proper reference for the pilot. (A single large polygon on the screen would not have any apparent motion.) Finally, the polygon: are assigned colors and/or shades so that adjacent polygons will not blend into each other.

The other USGS data bage used is the Digital In Geaph data which includes: political and administrative boundaries; hydrography conaisting of all flowing water, standing water, and wetlands; major transportation systems consisting of roadm and trails, railroads, pipelines, transmiseion ines, and airports; and significant manmade structures. The Digital Line Graph data is two-dimenaional. In the present invention featurea guch as water, roads, railroads, and pipelines are represented as polygons with elevations determined from the Digital Elevation Model data. Transmiseion linea and significant manmade structures are defined as three-dimensional objects made of polygons and are placed according to the elevations determined from the Digital Elevation Model data. The different types of objects are tagged so that by using control panel 106 the pilot can aelect them to be hlghlighted by category or by epecific object. For example, the pilot can choone to have all airports highlighted or juat the deatination airport. The pilot can also choose to have a specific highway highlighted.

Data from additional digital data baser can also be incorporated. An example of such a data base if from Jeppesen Sanderson whose NavData Services diviaion provides aeronautical charts and makea this information available in digital form.

While preferred embodiments of the present invention have been shown, it is to be expressly understood that modifications and changes may be made thereto and that the prement invention is eet forth in the following claims.

I claim:

1. A pilot aid which uses an aircraft's position and $/$ attitude to transform data from a digital data base to present a pilot with a synthesized three dimensional projected view of the world comprising:
a position determining means for locating said aircraft's position in three dimensions;
a digital data base means containing polygon data representing terrain and manmade structures;
an attitude determining means for determining said aircraft'g orientation in three dimensional spaces
a control panel means for allowing/eaid pilot to elect different operating features;
a computer means for using said Aircraft position data to access said terrain and manmade structure data from said digital data base and using said aircraft orientation data to transform ald terrain and manmade structure data to provide three dimensional projected image data according to said operating features selected by said pilot;
a display means for displaying said three dimensional projected image data.
2. The position determining means of claim 1 , wherein sid position determining means comprises a gtandard system for receiving and processing data from the. global positioning system.
3. The attitude determining peans of claim 1 , wherein said attitude determining means comprises /a standard avionics system.
4. The digital data base of claim 1 , wherein said digital data base means comprises a ed rom disc and cd rom drive.

33

Declaration for Utility or Design Patent Appilaation

As a below-named inventor, I hereby declare that my residence, post office address, and citizenship are as etated below next to my name and that I believe that I am the original, firat, and sole inventor [if only one name is listed below] or an original, firat, and joint inventor [if plural names are listed below] of the aubject matter which is claimed and for which a patent is sought on the invention, the specification of which is attached hereto and which has the following title:
" \qquad $"$

I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment specifically referred to in the oath or declaration. I acknowledge a duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56(a).

I hereby declare that all statements made herein of my own knowledge are true and that all atatements made on information and belief are believed to be true; and further that these atatements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, unter Title 18, United States Code, Section 1001, and that such willful false statements may jeopardize the validity of the application or any patent issues thereon.

Please send correspondance and make telephone calls to the First Inventor below.

| Print Name: | Date: |
| :---: | :---: |
| Residence: | Citison of: |
| Post Office | |

Telephone: \qquad

In the United 8tates Patent and Trademark Office

\qquad
Joint/Second Applicant:
Title: " PILOT AID USING SYNTHETIC REALITY "

Emall Entity Declaration - Independent Inventor (s)
As a below-named inventor, I hereby declare that I quality as an independent inventor as defined in 37 CFR 1.9(c) for the purposes of paying reduced fees under section 41 (a) and (b) of Title 35 United States Code, to the Patent and Trademark Office with regard to my above-identified invention described in the specification filed herewith. I have not assigned, granted, conveyed, or licensed - and am under no obligation under any contract or law to asaign, grant, convey, or license.- any rights in the invention to either (a) any person who could not be classifled as an independent inventor under 37 CFR $1.9(c)$ if that person had made the invention or (b) any concern which would not qualify as either (i) a emall business concern under 37 CFR $1.9(d)$ or (ii) a nonprofit organization under 37 CFR 1.9(e).

Each person, concern, or organization to which I have assigned, granted, conveyed, or licensed - or am under an obligation under contract or law to asaign, grant, convey, or licenae - any rights in the invention is listed below:
[N There is no such person, concern, or organization.
[] Any applicable person, concern, or organization is listed below:
Full Name: \qquad
Addrese: \qquad

I acknowledge a duty to file, in the above application for patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying, the earliest of the iague fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28(b).

I hereby declare that all statements made herein of my own knowledge are true and that all atatements made on information and belief are believed to be true, and further that theae etatements were made with the knowledge that willful false gtatements and the like eo made are punishable by fine or imprisonment or both, under Section 1001 of Title 18 of the United States Code, and that such willful false atatements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.
nedmanarim
sifnature of fole/first Inventor
Jed Margolin
Print Name of Sole/First Inventor
Date of Signature: \qquad 1994

Print Name of Joint/Second Inventor
Date of Signature: \qquad

Fig. 1

Fig. 2

Fig. 4

Fig. 9a

Fig. 10a

Fig. 11a

Fig. 13b
Fig. $13 e$

Fig. $13 e$
 Information Disclosure statement

Plot Aid using Synthetic Reality
 1 of 8

Commissioner of Patents and Trademarks
Washington, District of Columbia 20231
Sir:
Attached are completed Form PTO-1449 and copies of the pertinent parts of the references cited thereon. Following are comments on these references pursuant to Rule 98:

The 1984 patent to Taylor et al. (U.S. Patent No. 4;445,118) shows the basic operation of the global positioning system (GPS).

The 1984 patent to Johnson et al. (U.8. Patent No. 4,468,793) shows a receiver for receiving GPS signals.

The 1984 patent to Maher (U.S. Patent No. $4,485,383$) shows another receiver for receiving GPS aignala.

The 1986 patent to Evans (U.S. Patent No. $4,599,620$) shows a method for determining the orientation of moving object and producing roll, pitch, and yaw information.

The 1992 patent to Timothy et al. (U.S. Patent No. 5,101,356) also shows a method for determining the orientation of a moving object and producing roll, pitch, and yaw information.

The 1993 patent to ward et al. (U.s. Patent No. $5,185,610$) shows a method for determining the orientation of a moving object from a single GPS receiver and producing roll, pitch, and yaw information.

The 1992 patent to Fraughton et al. (U.S. Patent No. 5,153,836) shows a navigation, surveillance, emergency location, and collision avoidance system and method whereby each craft determines its own position using LORAN or GPS and transmits it on a radio channel along with the craft's identification information. Each craft also receives the radio channel and thereby can determine the position and identification of other craft in the vicinity.

In the United States Patent and Trademark office Information Disclosure statement

Jed Margoli,n
Pilot Aid using Synthetic Reality

The 1992 patent to Beckwith et al. (U.s. Patent No, 5,140,532)
provides a topographical two-dimensional real-time display of the terrain over which the aircraft is passing, and a slope-shading technique incorporated into the sybtem provides to the display an apparent three-dimensional effect similar to that provided by a relief map. This is accomplished by reading compressed terrain data from a casgette tape in a controlled manner based on the instantaneous geographical location of the aircraft as provided by the aircraft navigational computer byatem, reconstructing the compressed data by suitable processing and writing the reconstructed data into acene memory with a north-up orientation. A read control circuit then controls the read-out of data from the scene memory with a heading-up orientation to provide a realtime display of the terrain over which the aircraft is passing. A symbol at the center of display position depictg the location of the aircraft with respect to the terrain, permitting the pllot to navigate the aircraft even under conditions of poor viaibility. However, the display provided by this system is in the form of a moving map rather than a true perspective display of the terrain as it would appear to the pilot through the window of the aircraft.

Abstract

The 1987 patent to Beckwith et al. (U.S. Patent No. 4,660,157) Le similar to U.S. Patent No. 5,140,532. It also reads compressed terrain data from a cassette tape in a controlled manner based on the instantaneous geographical location of the aircraft as provided by the aircraft navigational computer system and reconstructs the compressed data by suitable processing and writing the reconstructed data into a sene memory. However, ingtead of providing a topographical two-dimensional diaplay of the-Eerrain over which the aircraft is passing and using a slopeshading technique to provide an apparent three-dimensional effect similar to that provided by a relief map as


```
        In the United gtates Patent and Trademark office Information Disclosure statement
shown in the ' 532 patent, the ' 157 patent processes the data to provide a
```3D perspective on the dieplay. There are a number of differences between the- 157 patent and the present inventions1. The ' 157 patent tores the map as a collection of terrain points withassociatad altitudes; the large amount of storage required by thisapproach requires that a tape be prepared for each miasion.The present invention stores terrain data as a collection of polygonswhich results in a significant reduction of data base storage; largergeographic areas can be stored so that it it not necesṣary to generatea data base for each mission.
```

2. The '157 Patent uses a tape cassette for data base storage; the long
```access time for tape \(\operatorname{torage}\) makes it necessary to use a relativelylarge cache memory. The present invention uses a CD-ROM which permitsrandom access to the data so that the requirements for cache atorage arereduced.
3. The '157 patent accounts for the aircraft's heading by controlling the way the data is read out from the tape. Different heading angles result in the data being read from a different sequence of addresses. Since addreames exist only at dimorete locations, the truncation of addresa locations causes an unavoidable change in the map shapes as the aircraft changes heading. The present invention etores terrain as polygons which are mathematically rotated as the aircraft changes attitude. The resolution is determined by number of bits used to represent the vertices of the polygons, not the number of storage addresses.
4. The ' 157 accounts for the roll attitude of the aircraft by mathematically rotating the screen data after it, is projected. The 1157 Patent does not show the display being responsive to the pitch angle of
```


# In the United states Patent and Trademark office Information Disclosure statement 

Jed Margolin
Pilot Aid using Synthetic Reality
4 of 8


#### Abstract

the aircraft. In aymems such as this the lack of fidelity is apparent to the user. People know what things are gupposed to look like and how they are supposed to change perspective when they move. The present invention uses technigues that have long been used by the computer graphics industry to perform the mathematically correct transformation and projection.


5. The ' 157 shows only a single cockpit display while one of the embodiments of the present invention shows a stereographic head-mounted display whth head aensor. The pilot is presented with a synthesized view of the world that in responsive to wherever the pilot looks; the view is not blocked by the cockpit or other aircraft structures. This embodiment is not anticipated by the 157 patent.

The 1991 patent to Behensky ot al. (U.S. Patent No. 5,005,148) shows a driving aimulator for a video game. The road and other terrain are produced by mathematically transforming a three-dimensional polygon data base.

The first bales brochure from Atari Games Corp. La for a coin-operated game (Hard Drivin') produced in 1989. and relates to the ' 148 patent. The terrain is represented by polygons in a three-dimensional epace. Each polygon is transformed mathematically according to the position and orientation of the player. After being teeted to determine whether it is visible and having the appropriate illumination function performed, it is cilpped and projected onto the display screen. These operationa are in general use by the computer graphics industry and are well known to those powsessing ordinary skill in the art.

The second sales brochure from Atari Games Corp. Is for a coinoperated game (Steel Talons) produced in 1991 and which also relates to the ' 148 patent and the use of polygons to represent terrain and other objects.

# In the United states Patent and Trademark office 

 Information Disclosure statamontJed Margolin
Pilot Aid uaing synthetic Reality
5 of 8

The 1993 patent to Dawson et al. (U.s: Patent No. 5,179,638) ghows a a method and apparatus for providing a texture maped perspective view for digital map ayotems which includea a geometry engine that receives the elevation posta scanned from the cache memory by the shape address generator. A tiling engine is then used to transform the elevation posts into threedimensional polygons. There are a number of differences between the '638 patent and the present invention:

1. The 638 patent is for a digital map system only. The matter of how the location and ettitude are selected is not addressed. The present invention uses a digital map as part of a system for preaenting an alreraft pilot with a synthesized view of the world regardiesm of the actual visibility.
2. The 638 Patent atores the map as a collection of terrain points with associated altitudes, thereby requiring a large amount of data storage. The terrain points are transformed into polygons during, program runtime, thereby adding to the processing burden. The present invention stores terrain data as a collection of polygons which resulta in a significant reduction of data base atorage.
3. The present invention also teaches the use of a stereographlc headmounted display with a head sensor. The pilot is presented with a synthesized view of the world that is responsive to wherever the pilot looks; the view is not blocked by the cockgit or other aircraft structures. This embodiment ia not anticipated by the $* 638$ patent.

# In the United Btates Patent and Trademark office Information Disclosure statoment 

Jed Margolin
Pilot Aid using Synthetic Reality

The 1994 patent to Hamilton et al. (U.S. Patent No. 5,296,854) ahows a helicopter virtual display system in which the structual outlines corresponding to structual members forming the canopy structure are added to the head-up display in order to replace the canopy structure clues used by pilots which would otherwise be logt by the use of the head-up display.

The 1994 patent to Lawins (U.S. Patent No. $5,302,964$ ) shows a head-up diaplay for an aircraft and incorporates a cathode-ray tube image generator with a digital look-up table for distortion correction. An optical system projects an image formed on the CRT screen onto a holographic mirror combiner which is transparent to the pilot'g direct view through the aircraft windishield.

The eales brochure from the polhemus company shows the comercial availability of a position and orientation mensor which can be used on a head-mounted display.

The article from EDN magazine, January 7, 1993, pages 31-42, entitled "System revolutionizes surveying and navigation" is an overview of how the global positioning system (GPS) works and ilsts several manufacturers of comercially available receivers. The article also mentions several applications such as the use by geologists to monitor fault lines, by oll companiea for off-Bhore oil explorations, for keeping track of lowar-orbit eatellites, by fleet vehicle operatora to keep track of their fleet, for crop aprayers to spread fertilizer and pesticides more efficiently", and for in-car eystems to display maps for automotive navigation.

The section from "Aviator's Guide to GPS" presents a history of the GPS program.

# In the United states Patent and Trademark office Information Disclosure statement 

Jed Margolin
Pilot Aid using Synthetic Reality
7 of 8

The sales brochure from Megellan Systems Corp. is for commercially
available equipment comprising a GPS recelver with a moving map display. The map that is diaplayed is a flat map.

The sales brochure from Trimble Navigation is for a commercially available GPS receiver.

The sales brochure from the U.S. Geological Service shows the availability of Digital Elevation Models for all of the United States and its territories.

The second sales brochure from the U.S. Geological Service shows the availability of Digital Line Graph Models for all of the United States and its territories. The data includes: political and administrative boundaries; hydrography consisting of all flowing water, standing water, and wetlands; major transportation mystems consisting of roads and traila, railroads, pipelines, transmission lines, and airports; and significant manmade structures.

The Washington Sectional Aeronautical Chart is a paper map published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, that shows the complexity of the information that an aircraft pilot needs in order to fly in the area covered by the map. The other areas of the U.S. are covered by similar maps,

## In the United states Patent and Trademark Office Information Disclosure statement

Jed Margolin
Pilot Aid using Synthetic Reality 8 of 8

## The eales brochure from Jeppesen Sanderson ahows that the company <br> makes its navigation data base available in computer readable form.

Very respectfully,


Jed Margolin
Applicant Pro Se
July 10, 1994
3570 Pleasant Echo
San Jose, CA 95148
(408) 238-4564

ENC: List of Prior Art \& References

Sheet 1 of 6 08-513,298


Sheet 2 of 6



Sheet 4 of $6 \quad 08-513,298$


Sheet 5 of $608 \sim 513,298$



08/274,394 07/11/94 MARGOLIN

```
JED MARGOLIN
 SAN JOSE CA 95148-1916
```

23M1./1109


2394
DATE MAILED:

This la a communication from the examiner in charge of your application.

A shortened statutory period for response to this action.is set to expire $\qquad$ month (c),
 days from the date of this letter. Failure to respond within the period for response will cause the application to become abandoned. 35 U.S.C. 133

## Parl THE FOLLOWING ATtACHMENTS) ARE PART OF THIS ACTION:



2. NoNotice of Draftaman's Patent Drawing Review, PTO-948.

3. $\square$ Notice of Informal Paten Application, PTO-152.
4. $\qquad$ are pending in the application.

Of the above, claims $\qquad$ are withdrawn from consideration.

9.The corrected or substilute drawings have been received on $\qquad$ Under 37 C.F.R. 1.84. These drawings are $\square$ acceptable; , D not acceptable (see explanation or Notice of Draftsman's Patent Drawing Review, PTO-948).
10.The proposed additional or substitute sheet(z). of drawings, filed on $\qquad$ has (have) been approved by the examiner; Ddespproved by the examiner (see explanation).
11.The proposed drawing correction, fled $\qquad$ has been approved; $\square$ disapproved (see explanation).
12.Acknowledgement is made of the claim.for priority under 35 U.S.C. 119. The certified copy has $\square$ been received not been received $\square$ been filled in parent application, serial no. $\qquad$ ; fled on $\qquad$
13.sure this application appears to be in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11 ; 453 O.G. 213.
14. $\square$ Other

1. This application has been examined. Claims 1-13 are pending.

## Specification

2. The title of the invention is not descriptive. A new title is required that is clearly indicative of the invention to which the claims are directed.
3. Applicant is reminded of the proper language and format of an Abstract of the Disclosure.

The abstract should be in narrative form and generally limited to a single paragraph on a separate sheet within the range of 50 to 250 words. It is important that the abstract not exceed 250 words in length since the space provided for the abstract on the computer tape used by the printer is limited. The form and legal phraseology often used in patent claims, such as "means" and "said", should be avoided (emphasi"s added). The abstract should describe the disclosure sufficiently to assist readers in deciding whether there is a need for consulting the full patent text for details.

The language should be clear and concise and should not repeat information given in the title. It should avoid using phrases which can be implied, such as, "The disclosure concerns," "The disclosure defined by this invention," "The disclosure describes," etc.

Appropriate correction is requested.
4. Claim 1-13 are rejected under 35 U.S.C. § 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.
4.1. As per claim 1 (as exemplary of claims 1, 7 and 13), lines 6-7, the phrase "polygon data representing terrain and manmade structure" is unclear since there is no indication of what the polygon and manmade structure are. Clarification is requested. Furthermore, on lines $10-11$, the phrase "difference operating features" is not defined properly. Moreover, the phrase "using said aircraft position data to access said terrain and manmade structure data from said digital data base" on lines 12-13 is unclear since there is no recitation of how to "access" the data' from the digital data base by using the aircraft position data. Clarification is requested. In addition, on lines 14-15, the phrase "transform said terrain and manmade structure data to provide three dimensional projected image data" is also unclear since there is no indication of how to transform the terrain and manmade structure data to provide three dimensional projected image data. Clarification is needed.
4.2. As per claim 5 (as exemplary of claims 5 and 11), line 2, the phrase "the functions of pan, tilt, and zoom" is unclear since they are not defined properly.
4.3. As per claim 6 (as exemplary of claims 6 and 12.), line 6, the phrase "the route ahead" has no antecedent basis.
4.4. As per claim 7, lines 20-21, the phrase "said aircraft's flight to be displayed at later time" is unclear since the "aircraft flight" is unclear and has no antecedent basis.
4.5. As per claim 13, the instant passage on lines 10 12 is not defined properly, Clarification is requested.
4.6. The remaining claims, not specifically mentioned, are rejected for incorporating the defects from their respective parent by dependency.
5. The following rejections are based on the examiner's best interpretation of the claims in light of the 35 U.S.C. 112 errors noted above.

Claim Rejections - 35 USC S 103
6. The following is a quotation of 35 U.S.C. § 103 which forms the basis for all obviousness rejections set forth in this Office action:

A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

Subject matter developed by another person, which qualifies as prior art only under subsection (f) or ( $g$ ) of section 102 of this title, shall not preclude patentability under this section where the subject matter and the claimed invention were, at the time the invention was made, owned by the same person or subject to an obligation of assignment to the same person.
7. Claims 1-12 are rejected under 35 U.S.C. \$ 103 as being unpatentable over Beckwith et al (4,660,157) in view of Behensky et al. $(5,005,148)$ or a brochure from Atari Game Corp. (Hard Driving') or a brochure from Atari Game Corp. (Steel Talons).
7.1. With respect to claims $1,5-7$ and $11-12$, Beckwith et al. discloses a digital system for producing a real time video display in perspective of terrain over which an aircraft is passing on the basis of compressed digital data stored on a cassette tape (see at least an abstract). Beckwith et al. discloses that the system includes a position determining means for locating the aircraft's position in three dimensions and an attitude determining means for determining the aircraft's orientation in three dimensional space (see at least figure 1 and columns 5. and 6). Beckwith et al. further discloses that the system includes a digital data base means for storing a compressed terrain data (see at least the abstract). Beckwith et al. also discloses a computer means for reading compressed terrain data from the digital data base means in a controlled manner based on the instantaneous geographical of the aircraft as provided by the aircraft navigation computer system reconstructing the compressed data by suitable processing and writing the reconstructed data into a scene memory, and then providing a 3D perspective on the display (see at least columns 2 and 3).

Beckwith et al. does not explicitly disclose that a digital data base means containing polygon data representing terrain and manmade structures. However, Behensky et al. suggests a driving simulator for a video game which includes the road and other terrain are produced by mathematically transforming a threedimensional polygon data base (see at least column 2, lines 3338). The suggestion of Behensky et al. in at least column 2 would have motivated one of ordinary skill in the art to combine with the system of Beckwith et al. in order to provide a significant reduction of data base storage and a larger geographic areas can be stored so that it is not necessary to generate a data base of each mission. Similarly, the digital data base means containing polygon data representing terrain and manmade structures is also taught in a brochure from Atari Game Corp. (Hard Driving') or a brochure from Atari Game Corp. (Steel Talons). Thus, because of the motivation set forth above, it would have been obvious to a person of ordinary skill in the art at the time the invention was made to combine the teachings of Behensky et al. or the brochure from Atari Game Corp. (Hard Driving') or the brochure from Atari Game Corp. (Steel Talons) with the system of Beckwith et al.
7.2. With respect to claims 2-3 and 8-9, Beckwith et al. discloses the claimed invention as discussed above but does not explicitly discloses that the position determining means comprises a standard system for retrieving and processing data
from the global positioning system and the attitude determining means comprises a standard avionics systems. However, the use of the standard system for retrieving and processing data from global positioning system and the standard avionics systems are well known effective and efficient means for determining the position and the orientation of the aircraft. For examples, the Maher patent $(4,485,383)$ shows a receiver for receiving global positioning system and the Timothy patent shows a method for determining the orientation of a moving object form a single GPS receiver and producing roll, pitch, and.yaw information. It would have been obvious to one of ordinary skill in the art at the time of the invention to utilize the global positioning system and the standard avionics system in such a system as taught through Beckwith et al. because it would produce high degree of accuracy in determining the position and orientation of the aircraft including roll, pitch, and yaw information.
7.3. With respect to claims 4 and 10 , Beckwith et al. does not specifically disclose that the digital data base means comprises a $C D$ rom disc and $C D$ rom drive. However, the use of $C D$ rom disc.and $C D$ rom drive for storing data is well known effective and efficient means for storing any data. It would have been obvious to one of ordinary skill in the art at the time of the invention to utilize $C D$ rom disc and $C D$ rom drive in such a system as taught through Beckwith et al. because it would permit high degree of accuracy in the storing and restoring data,
random access to the data so that the requirements for cache storage are reduced.
8. Claim 13 is rejected under 35 U.S.C. § 103 as being unpatentable over Beckwith et al and Behensky et al. as applied to claims 1-12 above, and further in view of the sales brochure from the Polhemus company.

Beckwith et al. and Behensky et al. disclose the claimed invention except for a head mounted display means worn by the pilot and an attitude determining means for determining the orientation of the pilot's head. In three dimensional space. However, the sales brochure from the Polhemus company suggests the commercial available of a position and orientation sensor which can be used on a head-mounted display. The suggestion of the Polhemus company would have motivated one of ordinary skill in the art to combine the teaching of Polhemus company with the system of Beckwith et al. in order to allow the pilot to have a complete range of motion to receive a synthesized view of the world, a complete unhindered by the aircraft structure. Thus, because of the motivation set forth above, it would have been obvious to a person of ordinary skill in the art at the time the invention was made to combine the teachings in-Polhemus's brochure and Beckwith et al. patent.

