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1. INTRODUCTION 

The objective of this research is to predict the ionic structure of methane flames. 

An understanding of the process involved in the ionization of flames could lead to 

electrical control of blow-off limits, flame speed, and formation of soot. 

The numerical simulation of flames requires detailed reaction mechanisms. Over 

the past few years several researchers [1, 2, 3, 4, 5, 6, 7] have proposed reaction 

mechanisms that accurately describe methane combustion phenomena. However, 

none of these mechanisms include ionic species. It is thought that the inclusion 

of ions in the model would unduly complicate it since ion concentrations are small 

compared to the neutral species concentrations. Since the focus of this research is 

to investigate the ionic structure of methane flames, reactions involving ionic species 

must be included in the reaction mechanism. 

The neutral species reaction mechanism used in this work is a methane mech­

anism proposed by Coffee [2]. It includes reactions for the simulation of hydro­

gen flames. This makes it possible to investigate the behavior of ions in hydro­

gen/methane flames also. 

The ionic reaction mechanism is a group of reactions that includes ionic species. 

This mechanism includes the chemiionization reactions 

CH + 0^  CHO+ + e-
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and 

CH* + 0  CHO^ +e- .  

Ion-molecule, proton transfer, and dissociation recombination reactions are also part 

of the ionic species mechanism. This mechanism was added to the neutral species 

reaction mechanism to form a comprehensive reaction mechanism describing methane 

combustion. 

Lawton and Weinberg [8] have shown that by placing an ion-producing flame in 

an electric field, the saturation current for that flame can be measured. In general, 

ions are removed from a flame by recombination with electrons. When the flame is 

immersed in an electric field, ions are removed by recombination as well as by the 

electric field. The positive ions are attracted to the cathode. The negative charge, 

99% of which is carried by free electrons [9], is attracted to the anode. As the 

potential is increased, removal of the ions due to the electric field becomes dominant 

over removal by recombination. Eventually the electric field will remove the ions from 

the flames as fast as they are produced by chemiionization. The current produced 

by the movement of these ions when this phenomena occurs is called the saturation 

current, j,. It is defined as the rate of ion removal from the flame per unit area of 

flame front. 

Lawton and Weinberg [8] have shown that by plotting ln(j,) vs. 1/Ty results 

in straight lines. The slope of these lines are equivalent to an effective activation 

energy. It is thought that these activation energies are characteristic of the reaction 

or reactions responsible for the production of ions in flames. 

Lawton and Weinberg [8] and Peeter and Van Tiggelen [10] have measured the 

saturation currents and subsequent effective activation energies for methane flames. 
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However, these values were not related to a detailed reaction mechanism. 

To computationally simulate these experiments requires advanced solution tech­

niques. This research uses the split-operator technique [11] along with TRANSEQI 

[12] to solve the species conservation equations describing a one-dimensional, pre­

mixed, laminar flame. To simulate the electric field that is imposed on the flame, 

Poisson's equation is solved. This approach provides a means for calculating the 

saturation current produced by the flame. Experimental temperature profiles are 

used instead of solving the energy equation, thereby automatically accounting for 

heat losses due to radiation, convection, and conduction. It also makes the solution 

process easier in terms of shorter computation times. 

Simply by changing the final flame temperature of the experimental profile, the 

variation of the saturation current as a function of final flame temperature can be 

determined. The eff'ective activation energies for a lean, stoichiometric, and rich 

flame are calculated in this work. The results are then related to reactions in the 

ionic reaction mechanism. The final step is to predict the ionic structure of methane 

flames. 
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2. BACKGROUND 

One of the earliest observations of charged species in hydrocarbon flames dates 

back to 1801 when Volta [13] showed that the static charge on a nonconductor was 

dissipated when the material was introduced into the flame. A short time later in 

1802, Erman [14] found that by inserting wires into different parts of a flame a current 

was produced. 

This led to researchers trying to measure flame conductivity. Electric fields 

controlling flame deflection was another area of intense research. However, most of 

the research conducted in these early years was poorly documented. Missing was 

information about flame equivalence ratios, flow rates, and burner dimensions. One 

important result did come of this research. It showed ion concentrations in flames 

could exceed 10^^ ions/cm^. 

It was Arrhenius [15] in 1891 who proposed that the negative charge carrier in the 

flame was free electrons. He based his conclusion on results obtained through mobility 

measurements. In 1965 Calcote [9] used electric probes and a mass spectrometer to 

show that 99% of the negative charge was indeed carried by free electrons. 

In 1910 Thompson [16] suggested that electrons play an important role in flame 

propagation. Since the electrons are much smaller than positive ions, it was thought 

that they diffused quickly into the unburned gases. Therefore, electrons initiated or 
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assisted in the initiation of reactions that produced free radicals. Tanford and Pease 

[17] in 1947 proposed a similar theory for H atoms. Because the H atom is also very 

small, it too was thought to diffuse upstream and participate in initiation reactions. 

Up until 1947, it was thought that ions in flames were produced by thermal 

ionization. It was Calcote [18] who first disproved the general belief that ionization 

in flames was thermal in origin. In his review of ions in flames, he showed sufficient 

data existed in literature to support his theory that ions in flames were formed by a 

difl'erent mechanism. He proposed a kinetic mechanism as opposed to an equilibrium 

mechanism as being responsible for the formation of ionic species. This mechanism 

responsible for the formation of ions in flames was termed chemiionization. 

This concept of chemiionization was readily accepted by most flame researchers 

but it was not until the 1950s that flame ionization research really began. The 

laboratories of Sugden, Van Tiggelen, and Calcote were the first to build flame ion 

mass spectrometers and begin intense research into ion processes in flames. 

Littlewood [19] in 1962 and Sugden [20] in 1965 were two of the first researchers 

who focused on the reaction or reactions responsible for chemiionization. 

In 1960, Desty et  a l .  [21] showed that no ionization occurred in H2/O2 or 

H2/O2/N2 flames. Any ions observed were attributed to impurities in the fuel gases. 

This absence of ions in hydrogen flames allowed for the determination of hydrocarbon 

using gas chromatographic flame ionization detectors. These instruments were able 

to detect trace amounts of hydrocarbon by measuring the flame conductivity. This 

allowed Littlewood [19] to show that the reactions responsible for ion formation must 

involve species that contain both carbon and hydrogen. 

Bulewicz and Padley [22] in 1963 showed that the number of ions produced per 
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C atom was constant for any homologous series of fuels. Through this research it was 

concluded that CO and CO; yielded no chemiions. It was apparent that to produce 

the full quota of ionization, the carbon atom must be bonded to hydrogen atoms or 

to hydrogen atoms and other carbon atoms. Bulewicz and Padley [22] then showed 

that one of the reactants in the elementary process producing chemiions contained a 

single carbon and hydrogen atom. It was thought that CH was this react ant. 

The presence of hydrocarbons in flames is a necessary but not sufficient condition 

for ionization in flames. It had also been proposed that oxygen containing species 

must also be present for ionization to occur in flames. Calcote [23] substantiated this 

claim with experimental data that showed maximum ion concentrations occurred 

at or near stoichiometric conditions for several hydrocarbon flames. Bulewicz and 

Padley [22] demonstrated that the oxygen-containing species that participates in 

the elementary ionization reaction with CH could not be HgO, OH, CO, COg, or 

O2. Through additional tests, it was concluded that the 0 atom must be the one 

responsible for ionization. Fontijn et al. [24, 25] provided additional evidence for the 

dominant role played by 0 in the ion formation. 

Up to this point, it appeared that CH and 0 were the reactants in the bimolecular 

reaction that were responsible for ionization. This implied that CHO"*" must be the 

first ion formed. Therefore, 

CH + 0  CHO+ + e-

was the reaction responsible for the ion concentration in flames. 

Research in 1965 and 1967 [26, 27, 28] showed that electronically excited CH was 

not present in large enough quantities to be responsible for ionization in flames. This 

research was performed on lean to slightly rich hydrocarbon flames. Cool and Tjossem 
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[29] showed that the high rate of reaction of electrically excited CH made it a possible 

source of CHO"*". More recently, research by Eraslan and Brown [30] has shown that 

electronically excited CH was responsible for ion formation in rich acetylene flames 

with equivalence ratios between 1.7 and 2.5. The mechanism generally accepted as 

being responsible for ionization in flames consists of 

CH + O -  CHO^ + e-

and 

CH* + 0-^  CHO^ + e" .  

The latter of the two reactions being important only in rich flames [30]. 

The rate at which the ground state CH reaction proceeds was determined by 

Warnatz [7] in 1984. Cool and Tjossem [29] determined that the reaction of electri­

cally excited CH with oxygen atoms to be 2000 times faster than the same reaction 

with ground state CH. 

Information pertaining to the identities of ions in flames has been obtained di­

rectly from the flame using a mass spectrometer. Numerous ions, including CHO"*", 

have been identified by researchers as being present in hydrocarbon flames. Green 

and Sugden [31] were the first to divide the ions into three categories: true flame 

ions, ions formed in the mass spectrometer, and ions of unknown origin. In doing 

so, the list of major true flame ions present in all hydrocarbon flames was reduced 

to only four: CHO"*", HsO^, C3H3 , and CHg . This list was increased by one species 

when CgHgO"^ was found to be the dominant ion in lean acetylene flames [30, 32]. 

The concentration of CHO"*" found in hydrocarbon flames has been small. It was 

concluded that CHO"*" must therefore take part in a rapid ion-molecule reaction to 
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produce other observed species. Just downstream of the reaction zone large quantities 

of H2O were reported along with a dominant ionic species, HaO"*". The reaction 

thought to be responsible for the production of this ion and consumption of CHO^ 

was [33] 

CHO+ + H2O -  CO + H3O+. 

For equivalence ratios close to unity, HsO^ was found to be the dominant ion [9, 23, 

32]. 

The dominant ion in lean acetylene flames is CgHaO^. It was thought to be 

created by the proton transfer reaction [9, 32] 

H3O+ + CH2CO -  02^30+ + CO + 

However, this reaction was shown to be inadequate for the production of CgHsO^. It 

did not correctly predict the profile of the C2H3O"'" ion [34]. The alternate reaction 

H^O^ + C2H2 —' C2HZO^ + H2 

was proposed by Brown and Eraslan [30] as the source of this ion. Goodings et  a l .  

[35] experimentally showed to be the dominant ion in lean methane flames. 

The source of this ion was thought to be from the proton transfer reaction 

CHO+ + H2O ^  CO +  ̂ 30+.  

As the flame is made rich, C3H3 becomes the dominant ion [23, 32]. The source 

of this ion was thought to be 

CH+ + C2H2 C'3^3+ + H2 
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and 

HzO^ + C'3^2 —^ + H2O. 

In research performed by Brown and Eraslan [30], a sensitivity analysis showed 

C+ C2H2 —* C3H2 + H2 

to play the major role of producing the C3H3 ion. 

Diffusion and recombination are two processes by which the concentration of 

these ions can be reduced. A large ratio of electron concentration to negative ion 

concentration has been found in hydrocarbon flames. The electron, with its small 

mass and high mobility, has a high diffusion rate out of the flame. The result is a net 

positive charge in the flame. The positive ions diffusion rate increases because of this 

net charge effect. The self-induced electric field increases in magnitude up to a point 

where the motion of the electrons is so retarded that both the electrons and positive 

ions diffuse at the same rate. This process is called ambipolar diffusion. Ambipolar 

diffusion has been shown to be important in low pressure flames only. 

Three-body, radiative, dissociative, and mutual neutralization are four mecha­

nisms by which electrons can recombine. Calcote [23] has reported the recombination 

rate for ions to be independent of pressure. Recombination by three-body recom­

bination was eliminated since it is pressure dependent and unimportant in flames 

at pressures lower than 760 torr. Because of the absence of detectable continuum 

emissions in flames, Calcote [23] has dismissed radiative recombination of electrons. 

Mutual neutralization was also dismissed as a possible recombination path since its 

products are never observed in flames. The only other proposed mechanism remaining 

for electron consumption was dissociative recombination. Two possible dissociative 
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recombination reactions [33] were 

+ e- -  H2O + H 

and 

HsO^ + e —' H H OH. 

Lawton and Weinberg in 1969 [36] suggested that 

H3O+ + e- ^ H2O + H 

was responsible for recombination since it is highly exothermic. This reinforces the 

idea that the deactivation of HsO"*" was due to dissociation recombination. An idea 

that is based on the experimental observation that HgO"*" is the dominant ion in the 

recombination zone of flames. 

When the electric field is applied to the flame a current is produced by the 

movement of ions. The ions are being removed from the flame by recombination and 

electric field effects. As the field intensity is increased, the ion current increases at 

the expense of recombination. Further increase in the potential causes an increase in 

ion current to a point where the ion current becomes constant. At this point, ions 

are being removed by the electric field at the same rate in which they are generated. 

This maximum current is called the saturation current and is denoted by j^. It is 

equal to the rate of generation of charge per unit area of flame front. 

By measuring the saturation current, the ion generation rates can be determined. 

It was shown by Lawton and Weinberg [8] that the saturation current can be used to 

determine effective activation energies for ion-generating reactions. This was done 

by measuring the variation of saturation current with flame temperature. Therefore, 



11 

the saturation current became an important and easily measured tool in the study 

of flame ionization. 

In their experiments Lawton and Weinberg [8] used a porous disc burner as the 

cathode. The anode was a plane electrode mounted parallel to the flame and at a 

small distance above it. One advantage to the system was that the flame is always 

flat and by varying the flow rate, the saturation current was measured as a function 

of flame temperature. The ability to change the flow rate allowed for control over 

the heat loss and final flame temperature without altering the flame composition. 

The currents were measured using a microammeter. The researchers carried out 

experiments on methane, ethylene, and propane/air mixtures. They also investigated 

hydrogen/air mixtures to which trace amounts of hydrocarbon were added. 

Saturation currents as a function of final flame temperature were not documented 

by Lawton and Weinberg [8] for hydrocarbon flames. However, the saturation current 

as a function of equivalence ratio for each hydrocarbon flame was documented. 

For the hydrocarbon seeded hydrogen/air flame, the variation of saturation cur­

rents with final flame temperature was recorded. The hydrogen/air flames were 

seeded with up to 1% hydrocarbon. 

Lawton and Weinberg [8] showed that the slope of In(jj) vs. 1/T/ was the 

effective activation energy for the ionization process. Effective activation energies 

reported for the investigated flames ranged in value from 37.5±2 kcal/mole to 67±4 

kcal/mole depending on equivalence ratios and hydrocarbon fuel. The researchers 

recognized that the effective activation energies were much larger than the activation 

energies for proposed chemiionization processes in flames. They did not draw any 

firm conclusions about the resulting values of effective activation energies. It was 
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emphasized by the researchers that the work presented was purely to establish a 

practical method for the study of ion generation rates in flames. 

In 1968 Peeters and Van Tiggelen [10] measured the rate of the chemiionization 

process for flames with equivalence ratios close to unity. Their experimental set­

up included included a Powling-Egerton type burner open to the atmosphere. The 

burner served as the cathode and a conducting plate placed above the flame served 

as the anode. They measured the saturation current for various flame temperatures. 

The effective activation energy was found to be 73 kcal/mole. However, no attempt 

was made to relate this activation energy to a detailed reaction mechanism. 

About a decade later, Bertrand et al. [37] measured the burning velocity of a 

stoichiometric methane flame stabilized on a flat flame burner. The researchers mea­

sured the variation of saturation current with final flame temperature. The effective 

activation energy for this flame was equal to .53 kcal/mole. Again, no attempt was 

made to relate the effective activation energy to a reaction mechanism. 

Numerical methods used in flame simulations have progressed to the point where 

it is now computationally possible to predict the saturation currents in flames. The 

effective activation energies can then be determined which makes it possible to predict 

the ionic structure of flames. 

The focus of this research was to relate the effective activation energies obtained 

from the saturation currents to a reaction mechanism. The ionic structure of a 

methane flame was investigated for equivalence ratios ranging from 0.2 to 2.13. The 

saturation currents for these flames were predicted for various final flame temperature 

which led to an effective activation energy. The reaction that was responsible for 

these effective activation energies was then determined through a sensitivity analysis. 
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The computer model allowed the ion movement to be traced through the reaction 

mechanism. 
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3. CHEMICAL KINETICS 

It is essential to establish a comprehensive chemical kinetic mechanism prior 

to studying combustion phenomena in premixed flames. The mechanism must in­

clude reactions necessary to simulate a methane flame. Part of this research will be 

conducted on ion production in hydrogen flames seeded with methane. Therefore, 

the mechanism must also include reactions necessary to simulate a hydrogen flame. 

Such a mechanism- must include reactions for the oxidation of fuel for both flames. 

The ionic mechanism must allow for the production and depletion of ions through 

chemiionization, ion-molecule reactions, and dissociative recombination. The ionic 

mechanism was developed with the knowledge that ions do not form in hydrogen 

flames. Only major ions are considered in the ionic mechanism since they constitute 

more than 85% of the total ion current. The entire mechanism is listed in Table 3.1. 

3.1 Neutral Species Mechanism 

A number of researchers have performed detailed studies of the chemical kinetics 

of methane flames [1, 2, 3, 4, 5, 6, 7]. The reactions that make up the neutral species 

mechanism were taken from several authors and assembled by Coffee [2]. Reactions 

for the formation of CH*(A^A) and CH are taken from an acetylene flame mechanism 

that was assembled from other authors by Eraslan and Brown [30]. 
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The first 21 reactions were taken from Dixon-Lewis [38]. These were verified 

in studies performed on H2/O2/N2 and CO/H2/O2/N2 flames [.39]. The inclusion of 

these reactions make it possible to study the consequences of seeding hydrogen flames 

with methane. 

Dean et al. [40, 41] performed a series of shock tube experiments. These experi­

ments led to the inclusion of reactions 22-29. The first four reactions of this set allow 

for the formation of CH3 from CH4. Formaldehyde (CH2O) is then formed from CH3. 

The reactions that include CHO (rxns. 30-33) have reaction rates that are not 

well known. The values from Dixon-Lewis [38] are used for the lack of better data. 

Reactions 34-37 include the oxidation of CH4. This set of reactions were shown 

by Gelinas [42] to be necessary for modeling a GH4 flame. 

The primary source of C2 hydrocarbons is through reaction 38. The rate for this 

reaction was taken from Warnatz [6] and Dixon-Lewis [38] which was then modified 

for atmospheric conditions by Luther and Troe [43]. Reactions 38-56 make up the 

road map followed by C2H6 to the formation of CH3 and CO: 

C2H6 —' C2H5 —' C2H4 —' C'gHg —' C2H2 —: CHg, CO. 

Also, reactions 46 and 47 form a pathway for the production of CH2O. 

The kinetics describing CH2 chemistry is provided in reactions 57-62 [42]. These 

reactions were first used in the modeling of CH^/air flames by Coffee [2]. 

Work performed in the area of ionic mechanisms for methane flames is very 

limited. Therefore, it was necessary to expand the neutral species mechanism to 

include reactions that form precursors vital to ionization. Since chemiionization is 

believed to be the major source of ions in hydrocarbon flames, reactions that form 

the precursors CH and CH*(j4^A) which in turn feed the chemiionization reactions 
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are included in the mechanism. These reactions (rxns. 63-73) were taken from a 

mechanism proposed by Eraslan and Brown [30] for acetylene flames and added to 

the neutral species mechanism. 
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Table 3.1; Neutral species reaction mechanism (Reaction rates 

are in cm^-mole-sec-cal units, k  — AT^e~^ .  ) 

Reaction A B Ea 

1 OH + Hz - H2O + H 1.17E+09 1.3000 1825.0 

2 H + O2 ^ OH + 0 1.42E+14 0.0000 8250.0 

.3 0 + H2 ^ OH + H 1.80E+10 1.0000 4480.0 

4 H + O2 + M' - HO, + M' 1.03E+18 -0.7200 0.0 

5 H + HO2 - OH + OH 1.40E+14 0.0000 540.0 

6 H + HO2 - 0 + H2O l.OOE+13 0.0000 540.0 
7 HO2 + H ^ O2 + H2 1.25E+13 0.0000 0.0 

8 HO2 + OH ^ O2 "H H,0 7..50E+12 0.0000 0.0 

9 HO2 + 0 ^ O2 + OH 1.40E+13 0.0000 540.0 

10 H + H + H2 ^ H2 + H2 9.20E+16 -0.6000 0.0 

11 H + H + O2 ^ H2 + O2 l.OOD+18 -1.0000 0.0 

12 H + H + H2O ^ H2 + H2O 6.00E+19 -1.2500 0.0 

13 H + H + CO ^ H, + CO l.OOE+18 -1.0000 0.0 

14 H + H + CO2 ^ H2 + CO2 5.49E+20 -2.0000 0.0 

15 H + H + CH4 ^ H, + CH4 5.49E+20 -2.0000 0.0 

16 H + OH + M" ^ H2O + M" 1.60E+22 -2.0000 0.0 

17 H + 0 + M" ^ OH + M" 6.20E+16 -0.6000 0.0 

18 OH + OH ^ H2O + 0 5.72E+12 0.0000 390.0 

19 OH + CO ^ CO2 + H 1.57E+07 1.3000 -385.0 

20 0 + CO + M' - CO2 + M' 5.40E+15 0.0000 2300.0 

21 H + CO + M' ^ CEO + M' 5.00E+14 0.0000 755.0 

22 CH4 + 0 ^ CH3 + OH 4.07E+14 0.0000 7040.0 

23 CH4 + H ^ CH3 + H2 7.24E+14 0.0000 7590.0 

24 CH4 + OH CH3 + H2O 1.55E+06 2.1300 1230.0 

25 CH4 + M ^ CHs + H + M 4.68E+17 0.0000 46910.0 

26 CH3 + 0 ̂  CH2O + H 6.02E+13 0.0000 0.0 

27 CH2O + 0 ^ CHO + OH 1.82E+13 0.0000 1550.0 

28 CH2O + H ^ CHO + H2 3.31E+14 0.0000 5290.0 

29 CH2O + OH ^ CHO + H2O 7.58E+12 0.0000 72.0 

30 CHO + O2 - CO + HO2 3.00E+12 0.0000 0.0 
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Table 3.1 (Continued) 

Reaction A B Ea 

31 CHO + H ^ CO + H2 4.00E+13 0.0000 0.0 

32 CHO + OH ^ CO + H2O 5.00E+12 0.0000 0.0 
33 CHO + 0 - CO + OH l.OOE+13 0.0000 0.0 
34 CH2O + CH3 - CHO + CH4 2.23E+13 0.0000 2590.0 

35 CH3 + OH ^ CH2O + H2 3.98E+12 0.0000 0.0 
36 CH3 + HO2 - CH4 + O2 1.02E+12 0.0000 200.0 
37 CO + HO2 -  CO2 + OH 1.50E+14 0.0000 11900.0 

38 CH3 + CH3 ^ C2H6 4.56E+17 -7.6.500 4250.0 
39 CoHfi + 0 ^ C2H5 + OH 2.51E+13 0.0000 3200.0 
40 C2H6 + H ^ C2H5 + H2 5.00E+02 3.5000 2620.0 

41 CgHg + OH C2H5 + HgO 6.63E+13 0.0000 675.0 

42 C2H5 + H C2H6 7.23E+13 0.0000 0.0 

43 C2H5 + H ^ CH3 + CH3 3.73E+13 0.0000 0.0 
44 C2H5 ^ C2H4 + H 2.29E+11 0.0000 19120.0 
45 C2H5 + O2 ^ C2H4 + HO2 1.53E+12 0.0000 2446.0 
46 C2H4 + 0 ^ CH2 + CH2O 2.53E+13 0.0000 2516.0 
47 C2H4 + OH ^ CH2O + CHg 5.00E+13 0.0000 3020.0 

48 C2H4 + 0 ^ C2H3 + OH 2.53E+13 0.0000 2516.0 
49 C2H4 + O2 ^ C2H3 + HO2 1.33E+15 0.0000 27680.0 
50 C2H4 + H ^ C2H3 + H2 2.00E+15 0.0000 10000.0 

51 C2H4 + OH ^ C2H3 + H2O 4.40E+14 0.0000 3270.0 
52 C2H3 + M ^ C2H2 + H + M 3.01E+16 0.0000 20380.0 

53 C2H3 + O2 ^ C2H2 + HO2 1.57E+13 0.0000 5030.0 

54 C2H3 + H ^ C2H2 4" H2 7.53E+13 0.0000 0.0 
55 C2H3 + OH ^ C2H2 + H2O l.OOE+13 0.0000 0.0 
56 C2H2 + OH ^ CH3 + CO 5.48E+13 0.0000 6890.0 
57 CEs + E^ CH2 + H2 2.00E+11 0.7000 -1500.0 

58 CH3 + OH - CH2 + H2O 6.00E+10 0.7000 1010.0 
59 CH2 + O2 - CHO + OH l.OOE+14 0.0000 1860.0 
60 CH2 + O2 - CH2O + 0 l.OOE+14 0.0000 1860.0 
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Table 3.1 (Continued) 

Reaction A B Ea 

61 CHg + O2 ^ CO2 + H2 l.OOE+14 0.0000 1860.0 

62 CH2 + H ^ CH + H2 4.00E+13 0.0000 0.0 

63 CH + 0 ^ CO + H 4.00E+13 0.0000 0.0 

04 CH + O2 - CO + OH 2.00E+13 0.0000 0.0 

65 C2H + 0 ̂  CO + CH l.OOE+13 0.0000 0.0 

66 CH* + M ^ CH + M 4.00E+10 0.5000 0.0 

67 CH* + O2 - CH + O2 2.40E+12 0.5000 0.0 

68 CH* ^ CH 1.90E+06 0.0000 0.0 

69 C2H + O2 ^ CH* + CO2 4.50E+15 0.0000 25000.0 

70 C2H + 0 - CH* + CO 7.10E+11 0.0000 0.0 

71 C2H2 + H ^ C2H + H2 6.00E+13 0.0000 23651.0 

72 C2H2 + OH ^ C2H + HgO l.OOE+13 0.0000 7000.0 

73 CgH + O2 - CO + CHO 5.00E+13 0.0000 1505.0 

74 CH + 0 ^ CHO+ + e- 2.52E+11 0.0000 1700.0 

75 CH* + 0 ^ CHO+ + e- 5.01E+11 0.0000 1700.0 

76 CHO+ + H2O ^ H3O+ + CO l.OOE+16 -0.0897 0.0 
77 HgO^ + C2H2 ^ C2H30^ + H2 8.39E+15 0.0000 0.0 

78 CHO+ + CH2 - CH3+ + CO 5.62E+14 -0.0060 0.0 

79 H3O+ + CHz - CH3+ + H2O 6.17E+14 -0.0060 0.0 

80 CHs"*" + C2H2 ^ C3H3''' + H2 7.24E+14 0.0000 0.0 

81 C3H3+ + H2O - C2H3O+ + CHz 7.24E+14 0.0000 0.0 

82 CHg^ + CO2 ^ C2H30^ + 0 7.24E+14 0.0000 0.0 

83 H3O+ + e- ^ H2O + H 2.29E+18 -0.5000 0.0 

84 C3H3'*' + e~ products 1.50E+19 -0.5000 0.0 

85 CH3+ + e" ^ CH2 + H 2.29E+18 -0.5000 0.0 

86 C2H3O''' + 6 M + H 2.29E+18 -0.5000 0.0 
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3.2 Ionic Species Mechanism 

The ionic mechanism consists of reactions 74-86. It was developed with the 

intention of simulating the major ions present in methane flames. 

From the time when ions were first detected in flames [1.3, 14] until 1947, it was 

believed that ions were formed by thermal ionization. Calcote [18] proposed ions were 

formed by a kinetic mechanism in a process called chemiionization. Between 1947 

and the present, many reactions responsible for chemiionization have been proposed 

and rejected. Currently, it is believed that 

CH +  0  -*  CHO^  +  e -

and 

Cff* + 0 - C'/{0+ + e" 

are responsible for the chemiionization process [10, 30]. The presence of the CHO^ 

ion is the prerequisite for the production of all other ions in the flame. These ions 

include CHj, C2H3O"'', C3H3 , and HgO^. Experiments have shown other ions to 

be present but are small in concentration compared to the aforementioned ions [36] 

and are neglected in the present study. Calcote [23] proposed that if chemiionization 

produced CHO"*", then it would be quickly consumed by HjO to produce via 

+ ffiO -> CO + //sO"*", 

thereby making the dominant ion in lean to rich hydrocarbon flames. He then 

went further to suggest that the ion recombined with an electron to produce 

H2O via 

+ e  —> H2O +  H,  
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Ay et al. [44] proceeded one step further and concluded that these reactions produced 

ion concentrations in agreement with experimentally measured values. Brown and 

Eraslan [30] in 1988 proposed that 

H3O+ + C2H2 ̂  C2H3O+H2 

and 

C + C2H2 —' C'zH^ + H 2 

were the reactions responsible for the formation of CgHaO"*" and C3H3 . Therefore, 

these five reactions are included as the driving mechanism behind ion production and 

recombination in this model. 

There are four mechanisms available for the deactivation of ions in flames. Three 

of these mechanisms include three-body, radiative, and mutual neutralization re­

combination. These three types of recombination have been ruled out by previous 

research [23] as unimportant paths for deactivation of ions. The fourth and most 

widely accepted mechanism is dissociative recombination. The last four reactions in 

this mechanism, 

HsO^ + e —' H2O + H, 

C'zH^ + e~ —• products, 

CH+ + e- ^ CH2 + H, 

and 

C'2HZO^ + e —' M + H. 

are dissociative recombination reactions. They provide the path for four of the five 

ions considered in the ionic mechanism. The reverse of the chemiionization reactions 

is the dissociative recombination path for the fifth ion, CHO^. 
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Reaction rate coefficients have been measured for only a limited number of ion-

molecule reactions [45]. These coefficients are estimated from the average dipole 

orientation (ADO) theory [46, 47, 48] for reactions in which experimental data does 

not exist. The ADO theory predicts a temperature dependent rate coefficient which 

is correlated to the parametric rate expression 

A: = AT-". (.3.1) 

The values of n range from 0.006 to 0.09. 

No negative ions are included in the model since it has been observed that 

approximately 99% of the negative ions present are free electrons [9]. 

3.3 Calculation of the Reverse Reaction Rates 

The reverse reaction rates are calculated using the chemical equilibrium coeffi­

cient, A'eq, defined by 

/r., = ^ = e-# (3.2) 

where 

r p 
AG = 

Li=l 

r R 

products  

EG, 
. 1 = 1  

(3.3) 
reactants  

The thermochemical data needed for calculating the properties of neutral species are 

taken from the JANAF tables [49]. Estimated values for the heat of formation for 

the ions are listed in Table 3.2. 

Ideally, the expression for the reaction rates would take the form of the modified 

Arrhenius equation, 

k = AT^e-^. (3.4) 
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Table 3.2: Heats of forma­
tion for each ion 
in kcal/mole 

Species A Reference 

H3O+ 139.0 [49] 
CH+ 256.0 [50] 

CHO+ 199.1 [49] 
C3H+ 255.0 [32] 

C2H3O+ 151.0 [51] 

This gives the rates of reaction as a function of temperature. The coefficients A, B, 

and Ea are unknowns. For a specified range of temperatures, AG is tabulated. The 

reverse reaction rate is then calculated using this value at each temperature. A least 

square analysis is then used to compute the coefficients A, B, and EQ of the modified 

Arrhenius equation (Eqn. (3.4)). 
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4. THEORY 

4.1 Governing Equations 

The flame simulated in this work is a one-dimensional laminar premixed flame. 

A flat flame burner is usually used to simulate this type of flame in the laboratory. 

A drawing of a typical flat flame burner is in Figure 4.1. The fuel and oxidant flow 

uniformly from the burner in the vertical direction. The flame is stabilized above 

the burner and below the positive electrode. The symmetry of the flame allows for a 

one-dimensional analysis to be used in this research. 

The equations describing a one-dimensional laminar premixed flame in the pres­

ence of an electric field include the mass and species conservation equations, and 

Poisson's equation to describe the electric field intensity. 

Mass conservation: 

Species conservation: 

dYi  dYi  1 d{AJi)  
(4.2) 
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Electrode 

Flame 

Figure 4.1: Diagram of a typical flat flame burner 
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Poisson's Equation: 

= -—(«+-n-)e (4.3) 
dx^ €o 

where V is the voltage, e,, is the permissivity constant, e is the electron charge, and 

71+ and n_ are positive and negative ion concentrations, respectively. The unsteady 

terms in the conservation equations are retained as a computational device only. This 

allows for a steady state solution to be reached by stepping through time until the 

time derivatives equal zero. This approach to solving the conservation equations was 

proposed by Spalding and Stephenson [52]. 

The pressure throughout the flame is assumed to be nearly constant. Because 

of the zero pressure drop, the momentum equation does not need to be solved. Since 

experimental temperature profiles are used, it is not necessary to solve the energy 

equation. 

The forces imparted on a neutral gas by an ion is a result of the charge carrier 

moving down a potential gradient. This causes the ion to increase in energy. Since its 

own kinetic energy cannot increase (due to a constant mobility) it must be dissipated 

to the neutral gas. This force per unit volume, F, is described by 

F =  Ee{n+— n^ ) .  (4.4) 

Substituting the expression for current flux 

j  = Een±ix± (4.5) 

into Equation (4.4) gives an expression for the force per unit volume in terms of 

mobility and current: 
1 ] 



Multiplying Equation (4.6) by the distance from the flame to an electrode will give 

an expression for the pressure drop across the flame: 

A p  =  i . c f — ( 4 . 7 )  
V/t+ 

Lawton and Weinberg [36] predict the maximum AP, from Equation (4.7), to be on 

the order of 0.0004 atmosphere. The resulting force is small in magnitude compared 

to the terms in the energy and species conservation equations. This is the basis for 

neglecting ionic wind effects in the flame. 

The mass flux, J,-, is obtained from the summation of the Stefan-Maxwell equa­

tions for normal and thermal diffusion [53]: 

(4.8) 
~ J = l 

Blanc's law allows a simplified approach to be used for the calculation of J, [53]: 

where 

and 

D,,r = k,„pYi- ' ^ . . (4.11) 

Warnatz [53] has shown the simplified approach for calculating mass and thermal 

diffusion is accurate to within a few percent of the exact solution of the Stefan-

Maxwell equations. In this study, thermal diffusion is calculated only for H and H2 

because these are the smallest molecules and have the largest thermal diffusion rates. 
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To account for the mobility in an external electric field, an additional term must 

be added to the mass flux for the ionic mechanism. 

Ji = - Di^T^^J + i-Li^rnpYiE. (4.12) 

The mobility, fi, can be related to diffusion by the Einstein relationship [54]: 

D • kT 
-^ = — = 7x8.617x10-®. (4.13) 
/i.j e 

Little experimental data are available on the diffusion of ions. Because of this, 

it is assumed that the diffusivity of ions is equal to that of the corresponding neutral 

species. From these assumed ion diffusion coefficients, the mixture mobility, ^, can 

be determined [.54]: 
/ \ -^ 

nspc  Y  N -V i  
cm-^V-^s-\ (4.14) 

The mobility of ions in nitrogen at 1000 K is approximated by [54] 

(4.15) 

where n is the electron density. The diffusion coefficient for electrons can then be 

determined by rearranging the Einstein relationship. 

CTTl^ 
D, = 8.93 X 10^ —. (4.16) 

The diffusivity is assumed to scale with temperature to the | power [36]. This 

(Eqn.(4.16)) leads to an expression for electron diffusion as a function of temperature: 

D, = 0.2824 X r# (4.17) 

In the absence of more complete data, this relationship is used to estimate electron 

diffusion in this work. 
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In general, the diffusion coefficients for positive and negative ions are different. 

An extreme disparity in diffusion rates occurs when the negative charge is carried 

by free electrons because diffusivity increases with decreasing mass. The resulting 

charge separation is opposed by a self-induced electric field that increases as the 

charge separation becomes larger. Eventually the faster charges are so retarded by 

the electric field that both the positive ions and electrons diffuse at the same rate in 

a process known as ambipolar diffusion [36]. 

In past research, the ambipolar diffusion coefficient was found by expression: 

This research introduces a alternative method for calculating the mobility and hence 

the ambipolar diffusion coefficient. Poisson's equation (Eqn. 4.3) is solved to give 

the electric field distribution throughout the flame. This is a function of the net 

charge density within the flame. The mobility for the positive ions can be calculated 

from Equation (4.14) which is a function of ion density. Accordingly, the effects 

of charge separation are accounted for explicitly rather than by use of ambipolar 

diffusion coefficients. 

To simplify the conservation equations by eliminating the convection terms and 

automatically satisfying continuity, a coordinate transformation [12] is made using 

The general form of the resulting equation for the neutral species mechanism is 

/'+ + M-
(4.18) 

dijj dip 
-=p and ^  = -m. (4.19) 

(4.20) 
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where the expressions corresponding to F and G are in Table 4.1 [12]. The trans­

formed equation for the ionic species mechanism is 

' ' w ' ' A ' ' " ' " '  
(4.21) 

where the expressions corresponding to F, F', and G are also in Table 4.1. The 

appropriate boundary conditions are 

y = yo dt — 0 (4.22) 

and 
d(p 
-T— = constant at ib — oo. 
dil> 

(4.23) 

The variable is a generic term for the mass fraction Yi and 4' is the transformed 

spatial variable. 

Table 4.1: Values of F, F' and G for the 
species consveration equations 

Equation F F' G 

Neutral model 
Ionic model 

Di,mP 
Di^mP -f 'i .mPYiE 

(jji 

UJi 

Solving Equations (4.20) and (4.21) using the above boundary conditions gives 

the solution in the i> coordinate system. A simple transformation back to the x 

coordinate system is obtained by a rearrangement of Equation (4.19), 

r di' 
= J 7 

t/»=0 
(4.24) 
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4.2 Computation Method 

4.2.1 Solution process 

Solving Equations (4.20) and (4.21) numerically is difficult because of stiffness 

introduced by the chemical generation term G. This is due to the fact that G may vary 

by orders of magnitude in the problem domain. This problem can be circumvented 

by using a split operator technique [11, 55, 56] that will divide Equation (4.20) into 

two equations and Equation (4.21) into three equations. The first part consists of 

the equation 

for both models. The third equation, which is exclusively for the ionic model, includes 

ion mobility: 

Equations (4.25) and (4.26) represent the time rate of change of y due to transport 

and chemical generation. These equations are the same for both the neutral and 

ionic mechanisms. The time rate of change of due to ion mobility is described 

by Equation (4.27) and is only solved when y is the mass concentration of an ionic 

species. 

Equations (4.25)-(4.27) are PDEs in time and space. Partial differential equa­

tions are more difficult to solve than ODEs. Therefore, a special algorithm called 

TRANSEQI [12] is modified to make the equations more tractable. 

(4.25) 

and 

(4.26) 

(4.27) 
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The iterative technique introduced in TRANSEQI is used as the basis for the 

development of the computer code for this research. TRANSEQI uses the method 

of lines [12] to convert the PDEs into ODEs. The ODEs are then solved using a 

commercial integrator. The approach used in this work utilizes common finite dif­

ference techniques as well as integration software packages. The generation equation 

(Eqn. (4.25)) is solved using LSODE [55]. The boundary condition at ^=0 is de­

scribed by 

^ = 0  ( 4 . 2 8 )  

and 

(G 

St v  

at 0=oo. 

To ensure stability, a simple implicit method is used to solve the diffusion equation 

(Eqn. (4.26)) which takes the form of 

+ S'?. (4.30) 
A'0 2 2 

The notations /Si+i, Ti±i and Fare computed using 

and 

(4.31) 

Titj, = (4.32) 

The boundary condition at 0=0 is 

= y»? (4.33) 

and 
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2 At 
A" = ' "*'"-''1 + I'l-M) 

at V'=oo. The Thomas algorithm is used to solve the resulting tri diagonal set of 

equations. The matrices solved have dimensions of NxN where N is the number of 

nodes. 

Equation (4.30) is valid for uniformly spaced grids. Throughout this research, 

the ratio of any two consecutive grid lengths does not vary significantly from unity. 

Therefore, the error introduced in using this simple implicit method for a nonuniform 

mesh is negligible. 

A simple explicit scheme is utilized in the solution of the ion mobility equation 

(Eqn. (4.27)). Stability is not an issue since the time increment used for the generation 

equation is too small to induce instabilities. Discretizing Equation (4.27) results in 

9i 
n+1 = Ai 

with 

and 

Alp 

yr' = y? 

+ rï 

= Ai Pn^'N ~ PN-I^'N-I 
Alp 

(4.35) 

(4.36) 

(4.37) 

at the V'=0 and 0=oo boundaries respectively. This results in the simultaneous 

solution of N equations. 

Estimated species profiles are used as initial conditions in the algorithm. The 

transport coefficients and molar production rates are calculated for each species at 

each nodal point based on these initial conditions. The transport equation for the first 

species is solved holding all species concentrations constant for one time increment. If 
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the current species is an ionic species, the ion mobility equation is solved holding all 

other species concentrations constant for one increment in the time step. At the next 

time step, the generation equation for the same species is solved. All other species 

concentrations are again held constant throughout the integration. The resulting 

At^ from the transport, ion mobility, and chemical generation equations are added 

to the input y. This gives the new y value that is used in subsequent integrations. 

The transport, ion mobility, and generation equations are then solved in the same 

manner for each of the remaining species. Property and mixture coefficients are 

then calculated using the new values of temperature and species concentrations. The 

evaluation of property and mixture coefficients can be updated periodically rather 

than at the end of each time step, which helps reduce the number of computations 

executed in the program. This methodology is repeated until all time derivatives 

approach zero. Stiffness is virtually eliminated since only one species is treated at 

any one time by the integrator. 

Poisson's equation (Eqn. (4.3)) must also be solved since ionic species are in­

cluded in the mechanism. This allows for the evaluation of the electric field distribu­

tion. After one complete iteration of all of the species, Poisson's equation (Eqn. (4.3)) 

is solved. Like the transport coefficients, Poisson's equation can be solved period­

ically to help reduce computer time. To transform Poisson's equation (Eqn. (4.3)) 

into a first order ODE, it is rewritten in state variable form by defining the electric 

field intensity E = —^ and substituting into Equation (4.3): 

d E  1 
-r— = —(n+ - n_)e (4.38) 
ax Co 
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and 

(4.39) 

with V(x=0) and V(x=L) as prescribed boundary conditions. The resulting boundary 

value problem is solved using a shooting method described in Appendix A. This 

iteration technique is depicted by the flow chart in Figure 4.2. 

Flow simulations are performed on a HDS AS/9160. The number of grid points 

used for the simulations range from 50 to 70. The average CPU time required to 

reach steady state using the modified TRANSEQI iteration technique is 20 minutes. 

The CPU times reported in this work are, on average, a factor of 10 faster than the 

CPU times reported by Pedersen [57] for similar methane flame simulations. In his 

work, Pedersen [57] used the original form of TRANSEQI introduced by Eraslan and 

Brown [12]. 

4.2.2 Adaptive grid algorithm 

Smooke et al. [58] have shown that by concentrating the grid points in areas 

of steep temperature gradients, computer time and accuracy can be improved for 

flame calculations. Therefore, an adaptive grid generator is used to produce a larger 

concentration of nodes in areas of large temperature gradients. A variation in the 

method proposed by Dwyer and Sanders [59] is used throughout this work. By letting 

the grid interval Az,-, be defined as [58] 

Az,' — (4.40) 
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where L is the domain length and B is the stretching parameter. The stretching 

parameter must be greater than zero for nonuniform grid spacing and equal to zero 

for equi-spacing. An increase in B results in an increase in the ratio of Ax^ax to 

^^min ' 

4.2.3 Estimation of initial conditions 

Good initial estimates of concentration and temperature profiles can result in 

substantial decreases in computation time. These initial profiles can be generated 

via a simple procedure developed by Goyal et al. [56]. It is based on conservation of 

atomic elements and the assumption that enthalpy is constant throughout the flame 

region. 

Initially a temperature profile is needed. Experimental profiles were used in this 

study. The use of experimental temperature profiles allows the model to correctly 

account for heat losses. These losses can be attributed to radiative, convection, and 

conduction heat transfer. The radical species profiles are then determined using 

= + [¥!" (4.41) 

where 

X -T" 

Superscripts c and h refer to the cold and hot regions of the flame. 

Mass fraction profiles for major species are then calculated based on atomic 

element conservation and constant enthalpy. The result is a set of linear equations 

described by 
nape 

- Ê hiYi (4.43) 
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nspc  

(4.44) 
j=i 

where Yg, is the mass fraction of element i in the mixture and a,-,j is the mass fraction 

of element i in species j. When Equations (4.41),(4.43), and (4.44) are combined 

they form a set of simultaneous linear algebraic equations. A simple computer code 

is used to generate these profiles. 

The lack of ionic species and minor neutral species data prevent the estimation 

of some concentration profiles. In these cases, the initial concentration profiles for 

the species are set to zero. 

4.2.4 Transport and mixture coefficients 

All transport and mixture coefficients are calculated via PROP, which is a col­

lection of FORTRAN subroutines for calculating gas mixture properties [60]. The 

relationships describing thermal conductivity, mixture difFusivity, thermal diffusivity, 

mixture densities, and mixture specific heats are: 

(4.45) 

D 
l - F i  

(4.46) 
^napc 

i-y;-
(4.47) 

(4.48) 
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and 
'"p<= / y. \ 

C V = E C V , ( ^ ) .  ( 4 . 4 9 )  

The estimation of the individual species thermal conductivity, A,-, and binary 

diffusion coefficients are shown in detail in Appendix B. The mixture and transport 

coefficients are calculated at each grid point and updated periodically throughout the 

integration. 
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5. RESULTS AND DISCUSSIONS 

5.1 Lean Methane Flame Simulations 

5.1.1 Neutral species 

The lean flame case study used to validate the methane mechanism in this re­

search is for an equivalence ratio of 0.2. A pressure of 40 torr is used for the simulation. 

The simulation results are shown in Figures 5.1-5.5. The experimental data shown 

in the figures are from Peeters and Mahnen [61]. The CH4, O2, HgO, CO, and CO2 

profiles in Figures 5.1 and 5.2 show excellent agreement with the experimental data. 

The simulation and experimental results for CH3, H, Hg, 0, HO2, and CH2O differ 

from each other by up to 45% which is within the uncertainty of the experimental 

results. The model overpredicts the experimental data in the post flame region. 

Olsson and Andersson [62] performed a sensitivity study on a lean ($=0.2), low 

pressure (40 torr) methane/oxygen flame. Their study indicated that small pertur­

bations in the reaction rates for reactions that produce CO from CHO could result 

in variations of up to 50% in the some species concentrations. The concentration 

profiles for CH3, H, H2, 0, HO2, and CHgO were found to be sensitive to changes in 

the reaction rates for 

CHO + M' H + CO -h M'. 
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The reaction rate for this particular reaction has a high degree of uncertainty associ­

ated with it [63]. Olsson and Andersson [62] showed that by increasing the reaction 

rate by a factor of five, well within its range of uncertainty, would produce changes 

in the concentrations of the aforementioned species in an excess of up to 50%. 

Considering the sensitivity of the species profiles to the rate of this reaction, 

it can be concluded that the predicted concentration profiles are in good agreement 

with the experimental data. 

5.1.2 Ionic species 

Goodings et al. [35] used a mass spectrometer to determine the total ion current 

for a methane/oxygen flame at 760 torr and an equivalence ratio of 0.2. The experi­

mental profiles are shown in Figure 5.6. The ion concentration profiles predicted by 

the model, shown in Figure 5.7, are for a lean flame ($=0.2) at a pressure of 40 torr. 

This will allow for a qualitative comparison to be made between the experimental 

and predicted profiles. 

The model predicted HaO"*" to be the dominant ion with an ion density of 

5xl0^°/cm^. The peak value of this ion occurs slightly downstream of the peak 

concentrations of the other ions. The slower decay of this ion is attributed to the 

reaction 

CHO+ + H20^ ^30+ 4- CO, 

which produces the majority of the H3O'*' ions in a region where there is a rapid 

increase in the production of HgO. The other major ions have associated with them 

a more rapid decay. This is due to the fact that these ions are formed by reaction 

intermediates that decrease rapidly in concentration through the flame. These general 
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Figure 5.1: Predicted and experimental profiles for HgO and 0% for a CH4/O2 flame 
($=0.2). The experimental data are denoted by symbols [6lj 
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Figure 5.3: Predicted and experimental profiles for HO, and CH^O for a CH4/O2 
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Figure 5.5: Predicted and experimental profiles for H, H2, 0, and OH for a CH4/O2 

flame ($=0.2). The experimental data are denoted by symbols [61] 

features of the ion profiles agree with experimental data obtained from Goodings et 

al. [35]. Calcote [64] found this slow decay of HaO"*" ions and rapid decay of the other 

major ions to be true for hydrocarbon flames in general. 

The predicted ratio of the peak ion concentrations to the total ion concentration 

for the major ions are shown in Table 5.1. The experimental ratio of the peak ion 

signal to the total ion signal are also shown in the same table. This will allow for a 

qualitative comparison to be made between the peak experimental and predicted ion 

values. 

The ratio of the maximum value of HsO"*" and C2H3O'*' to the total ion concen­

tration predicted by the model compare well with the experimental values. However, 

the predicted concentration of CHJ underpredicts the experimental value by factor 
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Figure 5.6: Experimental ion profiles for for a lean CH4/O2 flame ($=0.2) [.35] 

of two. The underprediction of CHj is thought to be related to the overprediction of 

C3H3 by the reaction 

CHt + C2H2 - CzHt + Hi. 

The abundance of C2H2 produces an excess of C3H3 at the expense of CH3 . The 

overprediction of CH3 indirectly caused by the reaction 

CHO + M' ^ H + CO + M' 

is responsible for this abundance of C2H2. This reaction is also responsible for a large 

concentration of CH which causes an overprediction of the CHO+ ion. 
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Figure 5.7: Predicted ion profiles for for a lean CH4/O2 flame ($=0.2) 

5.2 Stoichiometric Methane Flame Simulations 

5.2.1 Neutral species 

Species concentrations predicted by the methane mechanism for a stoichiometric 

flame ($=1.0) are compared to experimental results. The experimental data are 

taken from Bechtel et al. [1] for a flame at atmospheric pressure and an unburnt 

gas temperature of 298 K. The 0%, HgO, and temperature profiles are in Figure 5.8. 

The model accurately predicts the measured O2 and H2O profiles. Figure 5.9 shows 

the H2 and CO profiles to have peak concentrations in the flame front with lower 

concentrations in the burnt gas region. The general trend of the predicted profiles 

agree with the experimental data. However, the peak concentration of the predicted 

CO profile falls short of the measured value. Bechtel et al. [1] indicate the error 
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Table 5.1: Experimental [.35] and predicted ratios of the peak 
ion concentration to total ion concentration for a lean 
CH4/O2 flame 

peak ion signal peak ion concentration 
peak total ion signal peak total ion concentration 

Species experimental predicted 

H3O+ 0.804 0.770 
C2H3O+ 0.158 0.182 

CH+ 0.023 0.011 
CHO+ 0.004 0.036 
C3H3+ 0.0001 

associated with the peak value of CO is ±10%. Therefore this difference can be 

attributed to experimental scatter. The predicted and measured concentrations of 

CH4 and H2O in Figure 5.10 show good agreement between each other. 

5.2.2 Ionic species 

Peeters et al. [65] have investigated ion concentrations for stoichiometric CH4/O2 

flames at atmospheric pressure. Figure 5.11 contains the ion concentration profiles 

obtained from the computer model and Figure 5.12 contains the experimental ion 

concentration profiles. The major ion, HsO"*", shows a delayed peak in concentration 

compared to the CHO^, C3HJ, and C2H3O'*' profiles. The H3O"'" profile generally 

exhibits this type of behavior in hydrocarbon flames. The remaining ions peak in the 

flame front and then rapidly disappear. Again, this is due to the rapid production and 

then consumption of reaction intermediates in the flame region. It is these reaction 

intermediates that create CHO^, C3H3 , and C2H3O'*'. The general trends agree with 
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Figure 5.8: Predicted and experimental profiles for O2, H2O, and temperature for a 

experimental results obtained by Peeters et al. [65]. 

Table 5.2 lists the peak ion density values for HgO^, CHO"'", C3H3 , and CgHgO^. 

The predicted peak concentrations for these four ions are within a factor of four of 

their experimental counterparts. The final flame temperature used in the simulations 

is 2240 K. Peeters et al. [65] document a range of final flame temperatures varying 

from 1830 to 2084 K. In the same paper, Peeters et al. [65] show the ion yield 

to increase approximately 20% per 75 K increase in temperature. Therefore, the 

difference in flame temperature can be held responsible for the discrepancies in the 

ion concentrations. 

CH^/air flame ($=1.00). The experimental data are denoted by symbols 
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Table 5.2: Experimental [65] and 
predicted peak ion den­
sities (ions/cm^) for a 
stoichiometric CH4/O2 
flame 

Species Peak ion 
density^p 

Peak ion 
densitypred 

H3O+ 
C2H3O+ 

C3H3+ 
CHO+ 

1.5 X IQii 

4.3 X 10^ 
1.2 X 10® 
1.9 X 10? 

3.1 X lO^i 
2.0 X 10® 
1.5 X 10® 
6.1 X 10' 

5.3 Rich Methane Flame Simulations 

5.3.1 Neutral species 

Graphs of major neutral species for a methane flame with equivalence ratio of 

2.13 are shown in Figures 5.13-5.15. The experimental profiles are taken from a study 

conducted by Goodings et al. [32]. 

The O2 and CH4 profiles demonstrate good agreement with the experimental 

data. The major stable products, H2, H2O, and CO reach post flame concentrations 

that are close to the measured values. However, they reach these values at a posi­

tion that is further downstream. They also appear earlier upstream compared to the 

experimental data. The experimental temperature profile found in Goodings et al. 

[32] paper had abrupt changes in the pre- and postflame regions. This temperature 

profile is smoothed to prevent numerical instabilities caused by the abrupt tempera­

ture changes. The smooth temperature profile is responsible for early appearance of 

these species in the flame. It is also responsible for these species reaching equilibrium 
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values further downstream. 

This model predicts a CH3 concentration that is a factor of two lower than 

the data from Goodings et al. [32]. This is because for rich flames, CH3 is quickly 

depleted to produce CgHg. This same trend was observed in the rich flame simulations 

performed by Coffee et al. [2]. They reported a reduction in the CH3 profile by a 

factor of three compared to the experimental data for a rich flame. However, the 

actual equivalence ratio used by Coffee et al. [2] was not documented. 

The predicted value of C2H2 is also a factor of two lower than the experimental 

data. CHg is directly responsible for the production of C2H2, thereby causing the 

factor of two discrepancy in the data. These differences can be attributed to an 

incomplete understanding of the intermediate reactions responsible for the oxidation 

of CH4. 

5.3.2 Ionic species 

The predicted and measured ionic species are in Figures 5.16-5.18. These profiles 

are for a rich flame ($=2.13) at atmospheric pressure. The experimental values are 

taken from Goodings et al. [32]. 

The model correctly predicts the HsO"*" and C3H3 ions as the dominant ions. 

C3H3 and H30^ are predicted to be of the same order of magnitude, which agrees 

with experimental data of Goodings et al. [32]. The concentration of C2H3O'*' rel­

ative to the concentrations of H3O'*" and C3H3 is also in good agreement with the 

experimental data. 

The model predicts the peak concentration of C3H3 and CgHsO^ to be in the 

flame front followed by a rapid decrease in concentration. This is the accepted general 
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Figure 5.13: Predicted and experimental profiles for CH4, O2, H?, and CO for a 
CH4/O2 flame (§=2.13). The experimental data are denoted by sym­
bols [32] 

trend for these two ions in flames. The peak concentration of HsO"'' appears down­

stream of C3H3 and which is in agreement with the experimental data. This 

trend for is caused by the reaction 

HzO-^ + e" ^ H.O + H. 

Van Tiggelen [66] reports that for rich methane flames , concentrations of CHJ 

and CHO+ are about one-tenth that of HgO""". Peeters et al. [65] report that concen­

trations of CH3 and CHO"*" are a factor of 100 smaller than that of HsO"*". Goodings 

et al. [32] show the ion concentration of CH3 to be a factor of 400 smaller and the 

concentration of CHO^ to be a factor of 600 smaller than The predictions 

by this model show CHj and CHO+ concentrations to be three orders of magnitude 
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smaller than the concentrations of HsO^. The lower predicted concentrations for 

these two ion can be traced back to the neutral species model. It produces a lower 

concentration of CH3 and C2H2 by a factor of two. Since CH and CHg are derived 

from these two species, it can be assumed that it too is smaller than what might 

otherwise be expected. CH and CH2 are precursors of CHO"*" and CH3 which results 

in the lower concentration of these two ions. 

The experimental profiles for CHj and CHO"^ show trends that are not in accord 

with accepted ideas on ions in flames. The experimental data shows the CH^ ion to 

peak before the flame front with a slow decay that extends throughout the post-flame 

region. The experimental CHO+ profile exhibits two peaks, one before and one after 

the flame front. These discrepancies may be the result of the expansion cooling in 

the sampling nozzle during the experiment. 

5.4 Stoichiometric Hydrogen Flame Simulations 

A hydrogen reaction mechanism is an underlying feature of the methane reaction 

mechanism in Table 3.1. This allows for studies to be performed on hydrogen flames 

seeded with methane. 

It has been shown that hydrogen flames produce only minute quantities of ions 

when burned in air or oxygen [22, 31, 67]. These small concentrations are thought 

to arise from impurities. By seeding the hydrogen with small amounts of methane, 

ions are formed and efl'ective activation energies for the ionic mechanism can be 

investigated. 

A simulation to check the validity of the hydrogen mechanism is performed. 

The results of a stoichiometric hydrogen-air flame simulation at one atmosphere are 
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Figure 5.18: Predicted and experimental profiles for HsO"*" for a CH4/O2 flame 
($=2.1.3). The experimental data are denoted by symbols [.32] 

shown in Figures 5.19 and 5.20. Most resulting species concentration profiles are in 

excellent agreement with those by Warnatz [68]. The only discrepancy is the HO, 

profile which the present model overpredicts. This is thought to be the result of the 

omission of reactions which involve H2O2. The reactions involving this species are 

included in the mechanism used by Warnatz [68]. 

5.4.1 Hydrogen/methane flame simulations 

The stoichiometric hydrogen flame is seeded with 1.8% methane. The major ion, 

peaks just after the flame front and exhibits a slow decay in the post-flame 

region. It has an ion density of 1.0xl0^V<^"^^* Peeters et al [65] report a value of 

approximately 1.8xl0^^/cm^. The experimental profile also shows a slow decay in the 
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post-flame region. 

The model predicts an ion density on the order of 10®/cm^ for the C2H3O"*' ion. 

The model predicts all other ions to have ion densities lower than 10^/cm^. The 

experimental results of Peeters et al. [65] document an ion density of 10®/cm^ for 

CgHgO^. The CHO"*", CH3 , and C3H3 ions do not appear in significant quantities 

in the flame and therefore are not reported by them. 

In their experiments, Peeters et al. [65] measure a large concentration of CHsO"*" 

in the flame. It is reported to have a ion density of 2.5xlO^°/cm^. The reaction 

mechanism used in the present research does not take into account the formation of 

this ion which is usually not considered a major flame ion. 

5.5 Predicted Effective Activation Energies, Eg 

A steady state concentration of ions in a flame is reached when that rate of ion 

generation is equal to the rate that ions are removed by recombination. When an 

electric field is applied to the flame, ion removal is enhanced by the applied potential. 

As the potential is increased, ion removal by the electric field becomes dominant over 

ion removal by recombination. The current produced by the ion movement is the 

saturation current, j,. 

Since experimental temperature profiles are used in the simulations, it is a simple 

task to scale the temperature profile to a new final flame temperature. By varying 

the flame temperature and electric field strength, a saturation current can be found 

for each value of final flame temperature [57]. 

The plot of In(jj) vs. 1/T/, where T/is the final flame temperature, yields a 

straight line. The slope of this line is equal to the effective activation energy for 
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the ionic mechanism [8, 36]. This activation energy can be used to yield information 

concerning the mechanisms involved in ion formation. 

5.5.1 Eg for the lean methane flame 

The saturation currents for a lean methane flame are shown in Table 5.3. The 

saturation current is calculated for three different final flame temperatures: 1700, 

1900, and 2200 K. The eff'ective activation energy is equal to the slope of the line for 

In(jj) vs. 1/T/. The effective activation energy for the lean flame is in Table 5.3. 

Table 5.3: Predicted effective activation energy for a 
lean methane flame 

T/ (K) j, (nA/cm^) Ee pred .  (kcal/molc) 

2200 5.07 
1900 0.29 41.36 
1700 0.02 

There is a lack of experimental saturation currents and effective activation en­

ergies for the lean ($=0.2) methane flame simulated in this research. Experimental 

effective activation energies reported by several researchers [8, 36, 37, 65] have been 

shown to range in value from 37.5±2 to 73.0 kcal/mole for slightly lean to slightly 

rich flames. The predicted effective activation energy in Table 5.3 falls within the 

range of these upper and lower values. 

The next step is to find the relationship between the predicted effective activa­

tion energy and the reaction mechanism used in this work. The activation energies, 

Ea, used in the ionic reaction mechanism are compared to the predicted effective 

activation energy. Eg. Any reaction that has an activation energy, Ea, with the same 
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magnitude as the predicted effective activation energy, Eg, is subjected to a sensitiv­

ity analysis. The activation energy, EQ, for a suspected reaction is divided by two 

and a new predicted effective activation energy, E^, is calculated. This is done for 

each of the suspected reactions. The reaction that produces an effective activation 

energy, E^, equal to its original activation energy divided by two, Ea/2, is thought to 

be the rate limiting reaction responsible for controlling the ionization of the flame. 

For the lean flame, the reaction 

C2HSO+ + H2- H3O+ + C,H2 

is responsible for the predicted effective activation energy. Upon tracing the path 

followed by the ions, it is found that the primary charge recombination mechanism 

is 

+6 —' H -{• H2O. 

A schematic of the ionic reaction mechanism is shown in Figure 5.21. The movement 

of ions in the lean flame are denoted in Figure 5.21 by the oversized arrows. This 

implies that 

+ H2 —̂  + C2H2 

is the rate limiting reaction in the ionic reaction mechanism. 

5.5.2 Eg for the stoichiometric methane flame 

The final flame temperature, corresponding saturation current, and predicted 

effective activation energy for the stoichiometric flame are in Table 5.4. The exper­

imental effective activation energy determined by Lawton and Weinberg [8, 36] is 

included in the table. Lawton and Weinberg [8, .36] did not document the saturation 
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- C H  

\ 
C ^ H ^ O  

Figure 5.21: Predicted ion movement in a methane flame, $=0.21 

currents or final flame temperatures that produced this result. This does not allow 

for a direct comparison between the predicted and experimental values of saturation 

currents. However, the predicted effective activation energy compares well to that 

measured experimentally. The values are within 1 kcal/mole of each other. 

It is necessary to determine which of the reactions in the ionic model is respon­

sible for the predicted effective activation energy. Further investigation into the path 

taken by the ions in the ionic mechanism is conducted. The oversized arrows in 

Figure 5.22 indicate the pathway followed by the ions. This confirms the belief that 

+ e —' H -{• H2O 

is the primary charge recombination mechanism in flames [36]. It also implies that 
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Table 5.4: Experimental [8, 36] and predicted effective activation 
energy for a stoichiometric methane flame 

T/ (K) j, (/iA/cm^) Ee pred .  (kcal/molc) Eg eip (kcal/mole) 

2200 .36.10 
1900 1.31 46.81 46.00 
1700 0.07 

the reaction, 

C2F3O+ + H2^ ^30+ + C2H2 

is the rate limiting reaction in the mechanism. The effective activation energy for 

this reaction is within 11% of the predicted value. 

To be certain that this is indeed the rate limiting reaction, the effective activation 

energy for the reaction is decreased by a factor of 2 to 23 kcal/mole. Another series of 

simulations are run and the saturation currents and effective activation energy again 

are calculated. The new effective activation energy, based on the new saturation 

currents, is equal to 21.96 kcal/mole. In agreement to within 5% of the altered value 

of 23 kcal/mole. Therefore, it is concluded that the reaction, 

C2HzO^ + H2 —> HzO^ + C2H2, 

is the rate limiting reaction in the ionic model. 

5.5.3 Ee for the rich methane flame 

The effective activation energy and saturation currents for the rich flame simu­

lations are in Table 5.5. Comparing the saturation currents in Tables 5.3-5.5 shows 

an increase in the saturation current with equivalence ratio until it reaches unity. As 
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C ^ H ^ O  

Figure 5.22: Predicted ion movement in a methane flame, $=1.00 

the flame is made rich, the saturation current then decreases in value. This trend, 

shown in Figure 5.23, is supported by experimental observations made by Peeters et 

al. [65] for other hydrocarbon flames. This behavior is due to the maximum rate of 

ion generation that occurs in the stoichiometric flame. 

There is a lack of experimentally determined saturation currents for rich methane 

flames. This does not allow for a comparison to be made between predicted and 

experimental data. 

The predicted effective activation energy for the rich flame is 42.47 kcal/mole. 

Again, it is necessary to determine which of the reactions in the ionic model is 

responsible for the predicted effective activation energy. A sensitivity analysis is 
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Figure 5.23: Predicted saturation currents as a function of equivalence ratio 

performed on the ionic reaction mechanism. The sensitivity analysis used in the rich 

flame is analogous to the one used in the lean and stoichiometric cases. The results 

show that the reaction, 

C2E3O+ + ^2 - HaO-" + C2II2, 

is the rate limiting reaction in the rich flame simulations also. 

The path followed by the ions in the rich flame is indicated by the oversized 

arrows in Figure 5.24. It is reaffirmed that 

H3O+ + e~ ^ H + H2O 

is the primary reaction for charge recombination in the mechanism [36]. 
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Table 5.5: Predicted effective activation energy for a 
rich methane flame 

T/ (K) j, ( / tA/cm^) Ee pred .  (kcal/mole) 

2200 20.50 
1900 1.01 42.47 
1700 0.06 

5.5.4 Eg for the stoichiometric liydrogen/methane flame 

Lawton and Weinberg [8, 36] measured saturation currents (Table 5.6) for a stoi­

chiometric hydrogen flame seeded with 1% methane. The methane mechanism used in 

this research is shown to accurately simulate a hydrogen flame. The simulation results 

in Table 5.6 represent the predicted values for a stoichiometric hydrogen/methane 

flame. 

The difference between the experimental and predicted saturation currents range 

from a factor of two at 1555 K to a factor of four at 1456 K. The saturation currents 

are a function of the total ion current produced by the flame. The experimental and 

predicted saturation currents are in good agreement considering the ionic reaction 

mechanism predicted a total ion density that was a factor of 1.8 lower than the 

experimental data. 

The predicted effective activation energy is 51% lower than the measured value. 

However, it does fall into the range of values predicted by the methane flame simula­

tions. A sensitivity analysis is conducted since there is good agreement between the 

predicted and experimental saturation currents. 

It is reasonable to assume that the reactions controlling the ionic processes in 
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Figure 5.24: Predicted ion movement in a methane flame, #=2.13 

methane flames would be the same as those controlling the hydrogen/methane flame. 

This assumption turns out to be valid since the rate limiting reaction is the reaction, 

+ H2 — + C] ̂ 2. 

The mechanism controlling ion depletion is also the same as it was for the 

methane flame: 

+ e —*• H H2O. 

The path followed by the ions for this hydrogen/methane flame is identical to 

the path followed by the stoichiometric methane flame in Figure 5.22. 
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Table 5.6: Experimental [8, 36] and predicted effective activation energy for 
a stoichiometric hydrogen/methane flame 

T f  ( K )  ja pred  )  Ee pred .  (kcal/mole) ja exp  A )  Eg exp  (kcal/mole) 

1555 0.110 0.23 
1530 0.064 0.18 
1511 0.049 42.60 0.14 28.10 
1490 0.030 0.10 
1456 0.017 0.07 
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6. CONCLUSIONS 

A simple ionic reaction mechanism is proposed that accurately predicts the gen­

eral features of ions in lean to stoichiometric methane flames. The proposed reaction 

mechanism provides a means for the production and recombination of the major ions 

thought to be found in methane flames. The rich flame simulations show the ionic 

mechanism does not produce enough CHO"'" and CHj ions. This is attributed to the 

neutral species reaction mechanism and the uncertainties associated with the details 

of the intermediate reactions in the oxidation of CH4. 

Using this ionic reaction mechanism, the saturation currents for a lean, stoi­

chiometric, and rich methane flame are calculated. Some literature exists that con­

tains experimental saturation currents. However, rarely are the saturation currents 

reported as functions of temperature. This deficiency does not allow for a direct 

comparison between the experimental and the predicted saturation currents. The 

general trend of saturation current vs. equivalence ratio is predicted in this work. 

The saturation currents as a function of final flame temperature is used to deter­

mine the efl'ective activation energies for the ionization process. The predicted values 

range from 41.36 kcal/mole for the lean flame to 46.81 kcal/mole for the stoichio­

metric flame. These values fall into the range of values reported in the literature for 

methane flames. 
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The predicted effective activation energies are used to determine the rate limiting 

reaction in the ionic reaction mechanism. It is determined that effective activation 

energies predicted by the simulations corresponded to the reaction, 

+  H o H 3 O +  +  C 2 H 2 ,  

for all equivalence ratios. The tracing of ions through the ionic reaction mechanism 

verifies that this reaction is indeed the rate limiting reaction. The movement of 

ions through the ionic reaction mechanism for the lean, stoichiometric, and rich 

methane flames are shown in Figures 6.1-6.3. In all cases, the primary mechanism 

for deactivation is the same. The dissociative recombination reaction, 

+ e —' H H2O, 

is the primary outlet for the ions. 

A stoichiometric hydrogen flame seeded with small concentrations of methane is 

also investigated in this work. The same ionic reaction mechanism is used for these 

simulations that was used in the methane flame simulations. 

The major ion predicted by the model is HaO"^. This value is in good agreement 

with the experimental data. However, the experimental data show CHgO^ to be the 

second largest ion, in concentration, present in the flame. This ion is not included in 

the ionic reaction mechanism. 

The saturation currents predicted for the hydrogen/methane flame are in good 

agreement with experimental values. The differences range from a factor of two to a 

factor of four. 

The rate limiting reaction for the hydrogen/methane flame is 

+ H2 —^ + Cg^2' 
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H g O  

\ 
C 2 H 3 O + :  

Figure 6.1: Predicted ion movement in a methane flame, $=0.21 

H g O  

C 2 H 3 O + :  

Figure 6.2: Predicted ion movement in a methane flame, $=1.00 
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Figure 6.3: Predicted ion movement in a methane flame, $=2.13 

The ion path for this flame is the same pathway taken by the ions in a stoichiometric 

methane flame (Figure 6.2). The reaction, 

+ e —• H H201 

is again the primary reaction in the deactivation of the ions. 

It is recommended that the variation of saturation current with final flame tem­

perature be experimentally carried out and documented extensively for a methane 

flame. This will allow for a better comparison between experimental and predicted 

values. 

A study into the details of the intermediate reactions in the oxidation of CH4 is 

also suggested. Once these intermediate reactions are known, an improvement in the 
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prediction of ions in rich flames will result. 

An experimental investigation into the ions formed in a hydrogen/methane flame 

is needed to verify the appearance of CHsO""". It is possible that the experimental 

observation of this ion by researchers has been mistaken for the CHO"*" ion. 
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APPENDIX A. SHOOTING METHOD FOR SOLVING POISSON S 

EQUATION 

The methodology for a general second-order boundary-value problem of the 

form 

^  =  f i x , y , y ' )  y { 0 )  =  y o  y i Q ^ y i  ( 6 . 1 )  

is summarized as follows; 

1. Using physical intuition choose approximate values for the initial slope ^ = a. 

Let them be aj and dg. 

2. Solve the boundary-value problem twice, as an initial-value problem using ai 

and a2 as initial conditions along with i/(0) = j/o- Call the solutions t/i and 2/2 

at «C — L • 

3. Calculate the next approximation to the slope at z — 0 with 

, / \ yx=L ~ yx=L{'^i-l) /e o\ 
o-i+i — û,-_i + (a,- — a,_i) - - - - (6.2) 

yx=L(ai) - yx=L(ai-i) 

for i = 1,2,... 

4. Repeat steps 2 and 3 until a prescribed error for yi is attained. 
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APPENDIX B. CALCULATION OF TRANSPORT PROPERTIES 

The equations for the estimation of transport properties are borrowed from 

Hirschfelder et al. [69]. Other data are taken from Kee et al. [70]. 

The thermal conductivity of a pure gas is given by 

rù 
A, = 1989.1 X 

in the first approximation. 

T* = Ç is the reduced temperature and is the collision integral calculated 

at the reduced temperature. 

The Eucken equation corrects this for a polyatomic gas 

= A. . (6.4, 

A first approximation to the thermal conductivity for a binary mixture is 

A,,A = 1989.1 X lO-'L^' 

A second approximation to the self diffusion coefficient of a gas is 

(6.5) 

• /d,.,. (6.6) 

where 
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A-,il = 0.002628 

• iJiZ ' 2 

Ml (6.7) 

and 

f2 = ^ 
1 - A • 

The expression for A is defined as 

(6c'(7:*)-5)" 

where 

(16A-(7;^)- 125*(Î;*) + .55)' 

r,T') 

and 

(6.8) 

(6.9) 

(6.10) 

= (a.n, 

A second approximation to the binary diffusion coefficient of a gas is 

Ai,.). - Aw, • fk, («•") 

where 

£»(,-,j)^ = 0.002628 

T^[Mi + Mi) 
2MiMj 

(6.14) 
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The expressions for and are described by 

and 

where 

t:j = 
£ 

[^•bJ i j  

f  ^  • Î • 

"  I  M B - i  •  f cB .  

where 

w 

''' 60(.Ya + FA) ' 

X f M i  X ] M j  

'2XiXi  
1 + 

15 (M{ - Mjf 
8A^T,^ jMiM -  j  

and 
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The expression for U^, U^, and are described by 

U ' =  A - T r ^  +  i % ^  

and 

2 

t"= -4'%^ + 

A-{T-j){M, + Mj)Xl, 
imMjxij;, 

The thermal diffusion ratio in a mixture is 

nape  

J = l 

J¥=i 

(6 .22)  

(6.23) 

(6.24) 

{ l 2 B ^ T . j ) - 2 5 ) { M i - M j f  

S2A'(T;j)MiMj (6.25) 

Km = Y1 hj (6.26) 

where 
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^ ^ A-,A-,. (M,. - M j )  (30AXT,j) + 75) (ec^jTfj) - 5) 

~ AW.j)MiMj (i2A'{Trj) - 2AB*(Trj) + lio) 
which leads to the thermal diffusion coefficient, A',r-
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